
Special Topics in Theoretical Computer Science Spring 2019

Lecture 1 � 1/7/2019

Huy L. Nguyen Scribe: Huy L. Nguyen

In this course, we will discuss algorithmic methods for dealing with massive datasets. Below

we start with a deceptively simple problem that already illustrates many important techniques:

counting. Speci�cally, the algorithm needs to support the following three operations:

• Initialize the counter n to 0

• Increase the counter n by 1

• Report an estimate n̂ of n

A trivial algorithm is to store n using dlog ne bits. This turns out to be the best possible if we

require that n̂ is always equal to n. Indeed, if there is an algorithm using m bits then the algorithm

can only has 2m di�erent states. To be able to count exactly from 1 to n, the algorithm needs to be

able to return n di�erent outputs, which requires n di�erent states. Thus, 2m ≥ n i.e. m ≥ log n.
To overcome this lower bound, we will relax the requirements in two ways. First, the answer n̂

only needs to approximate n up to a 1± ε factor. Second, we allow the algorithm to be randomized

and fails with a small probability δ. In other words, we want n̂ to satisfy

Pr[|n̂− n| > εn] ≤ δ

1 Probability review

Before delving into some randomized algorithms, we �rst review some basic facts about probability.

Lemma 1.1 (Linearity of expectation). For any two random variables X and Y , we have

E[aX + bY] = aE[X] + bE[Y]

Lemma 1.2 (Markov's inequality). For any nonnegative random variable X and a > 0, we have

Pr[X ≥ a] ≤ E[X]

a

Lemma 1.3 (Chebyshev's inequality). For any random variable X and a > 0, we have

Pr[|X − E[X]| ≥ a] ≤ V ar(X)

a2

Lemma 1.4 (Cherno� bound). Suppose X1, X2, . . . , Xn are independent random variables with

Xi ∈ [0, 1]. Let X =
∑

iXi and µ = EX. If 0 < ε < 1 then

Pr[|X − µ| ≥ εµ] ≤ 2 exp(−ε2µ/3)

1

2 Morris' algorithm

In 1978, Morris gave the following algorithm for the counter problem:

• Initialize X to 0

• On each update, with probability 2−X we increase X by 1. Otherwise, X remains the same.

• We report n̂ = 2X − 1 as an estimate for n

The distribution of n̂ is complex so we will try to partially understand it through only two

statistics: the expectation and the variance. Let X(i) be the value of X after i updates.

Lemma 2.1.

E[2X
(n)

] = n

Proof. We prove the lemma by induction. For the base case, observe that 2X
(0)

= 20 = 1. For the
inductive case, we assume that E[2X

(n)
] = n+ 1 and will analyze E[2X

(n+1)
].

E[2X
(n+1)

] =

∞∑
j=1

Pr[2X
(n)

= j] · E[2X
(n+1) |2X(n)

= j]

=
∑
j

Pr[2X
(n)

= j] ·
(

1

j
· 2j +

(
1− 1

j

)
· j
)

=
∑
j

Pr[2X
(n)

= j] · (j + 1)

=
∑
j

Pr[2X
(n)

= j] · j +
∑
j

Pr[2X
(n)

= j]

= E[2X
(n)

] + 1

Lemma 2.2.

E[22X
(n)

] =
3

2
n2 +

3

2
n+ 1

Proof. We use induction as before.

E[22X
(n+1)

] =

∞∑
j=1

Pr[2X
(n)

= j] · E[22X
(n+1) |2X(n)

= j]

=
∑
j

Pr[2X
(n)

= j] ·
(

1

j
· 4j2 +

(
1− 1

j

)
· j2
)

=
∑
j

Pr[2X
(n)

= j] · (j2 + 3j)

=
∑
j

Pr[2X
(n)

= j] · j +
∑
j

Pr[2X
(n)

= j]

= E[22X
(n)

] + 3E[2X
(n)

]

=
3

2
(n+ 1)2 +

3

2
(n+ 1) + 1

2

By calculation, we can show that Var(n̂) ≤ n2/2. Unfortunately, this variance is still too high

to obtain an accurate estimate with high probability.

To reduce the variance, we use multiple independent copies of Morris' algorithm and compute

the average of their outputs. Let's call this algorithm Morris+. That is, we compute independent

estimator n̂1, . . . , n̂s and the output is

n̂ =
1

s

∑
i

n̂i

The key properties we are using is that E[n̂] = E[n̂1] but V ar(n̂) = 1
sV ar(n̂1). Thus, for

s = 10/ε2, by Chebyshev's inequality, we have

Pr[|n̂− n| ≥ εn] ≤ n2/(2s)

ε2n2
≤ 1

20

The next thing we need to �x is that the failure probability remains high at 1/20. To reduce

the failure probability to δ, we use t independent copies of Morris+ and output the median of the

outputs. Let Yi be the indicator random variable of whether the ith copy is correct. As we argued

before, Yi = 1 with probability 19/20 and Yi = 0 with probability 1/20. Our algorithm succeeds if

at least t/2 copies succeed. Thus, by the Cherno� bound, the probability that the algorithm fails

is bounded by

Pr[
∑
i

Yi < t/2] ≤ 2 exp(−t/3) ≤ δ

for t = Θ(log(1/δ)).

3

