
Dimension reduction with singular value decomposition

Huy L. Nguy�ên

We recently covered the Johnson-Lindenstrauss lemma, which gives a universal bound on the
number of dimensions needed to approximately preserve all the pairwise distances among n points.
The good thing about the result is that it is applicable to any dataset. However, it also fails to take
advantage of the speci�c features of any given dataset. Today, we will consider a di�erent method
for dimension reduction that optimizes for the speci�c dataset at hand.

1 Best �t subspaces

Suppose our data points are rows of an n × d matrix A:a1, . . . , an with n ≥ d. Our goal is to
�nd a k-dimensional subspace such that the sum of the squared distance between the data points
and the subspace is minimized. Suppose that the k-dimensional subspace is spanned by k vectors
v1, v2, . . . , vk. Our goal is to �nd v1, . . . , vk and nk coe�cients cij that minimizes

∑n
i=1 ‖ai −∑k

j=1 cijvj‖2.
To solve this problem, we �rst review the Pythagoras theorem.

Theorem 1.1. Consider a vector v and a subspace M . Let dist be the distance between v and the

subspace and proj be the length of the projection of v onto M . We have

‖v‖2 = dist2 + proj2

The theorem gives us an alternative view of the best-�t subspace problem. Since the lengths of
the data points are �xed, minimizing the sum of the squared distances between the points and the
subspace is equivalent to maximizing the sum of the squared lengths of the projections.

2 Singular vectors

First, let's consider the simplest case where k = 1 i.e. we are looking for a 1-dimensional line going
through the origin such that the sum of the squared distances between the points and the line is
minimized. Suppose that v is a unit vector along this line. The length of the projection of ai on
the line is |〈ai, v〉|. As discuss before, we are looking for v that maximizes

∑n
i=1 |〈ai, v〉|2 = ‖Ax‖2

We de�ne the �rst singular vector of A as

v1 = argmax
‖v‖=1

‖Av‖

Note that the maximizer is not unique: for any vector v, the vector −v gives the same objective
value. We simply pick an arbitrary maximizer and refer to it as the �rst singular vector. The value
σ1 = ‖Av1‖ is called the �rst singular value of A.

We can de�ne the other singular vectors recursively. The second singular vector is the best �t
line among those orthogonal to v1:

v2 = argmax
‖v‖=1,v⊥v1

‖Av‖, σ2 = ‖Av2‖

1

and so on
vi = argmax

‖v‖=1,v⊥v1,...,vi−1

‖Av‖

We can show that for any k, the best �t k-dimensional subspace is simply the span of the �rst
k singular vectors.

Theorem 2.1. The span of the �rst k singular vectors is a best �t k dimensional subspace.

Proof. We can prove the theorem using induction. For k = 1, the theorem holds by de�nition.
Next, we assume that the theorem is true for k = m and we will prove the theorem for k = m+ 1.
Suppose W is a best �t m+ 1 dimensional subspace. We can choose a basis for W as follows. First,
let wm+1 be a unit vector in W that is orthogonal to the projections of v1, . . . , vm onto W . Next,
we keep choosing vectors in W that are orthogonal to previous vectors to obtain a full orthogonal
basis of W : w1, w2, . . . , wm+1.

Notice that wm+1 is orthogonal to v1, . . . , vm because each vi is the sum of two components: its
projection onto W and its component that is orthogonal to W and wm+1 is orthogonal to both of
them.

By the hypothesis, the span of v1, . . . , vm is a best �t d dimensional subspace so:

m∑
i=1

‖Avi‖2 ≥
m∑
i=1

‖Awi‖2

Because wm+1 is orthogonal to v1, . . . , vd and vm+1 is the best �t line among vectors orthogonal
to v1, . . . , vm:

‖Avm+1‖2 ≥ ‖Awm+1‖2

Thus,
m+1∑
i=1

‖Avi‖2 ≥
m+1∑
i=1

‖Awi‖2

Because W is a best �t subspace, the span of v1, . . . , vm+1 is also a best �t subspace.

The vectors v1, . . . , vd are called the right singular vectors of A. The vectors Avi are also useful
and we normalize them to length one:

ui =
1

σi
Avi

These ui are called the left singular vectors of A. It can be shown that these ui are orthogonal
and in fact, ui is the unit vector that maximizes ‖ATu‖ among vectors orthogonal to u1, . . . , ui−1
i.e. they are the right singular vectors of AT .

These vectors form a decomposition of A into rank 1 matrices:

A =
∑
i

σiuiv
T
i

3 Power method for computing SVD

Suppose the SVD of A is A = UΣV T , where the ui, vi are the columns of U and V , respectively.
Notice that ATA = V ΣUTUΣV T = V Σ2V T . Thus, σ2i are the eigenvalues of ATA.

In your linear algebra course, you might have seen an algorithm for computing the eigenvalues
of a matrix. The singular values of A are simply the square roots of the eigenvalues ofM = ATA so

2

they can be computed that way. However, that requires solving a high degree equation, a nontrivial
task. We will see a iterative method for approximating the singular values. There are more advanced
ones but the basic idea is similar to the one we discuss.

Suppose for now that σ1 > σ2. The basic idea, which is similar to part of the LSH algorithm
we covered before, is to amplify this di�erence. The key observation is that for a symmetric matrix
M , the eigenvalues of M2 are the squares of the eigenvalues of M . Thus, the gap between the �rst
two eigenvalues values in M2 is larger than the gap for M . In general, the eigenvalues of Mk are
the kth power of the eigenvalues of M .

Thus, we will use a large value of k and the eigenvalues of Mk will be very di�erent from each
others, making it easier for us to compute them. Most of the times, we are interested in only the �rst
few eigenvalues rather than the whole spectrum. In particular, we will focus on computing only the
largest one. To do so, instead of working withMk and use matrix multiplications, a slow operation,
we will use the following technique. Let x be a random vector in Rd. Because the singular vectors
vi form a basis, we can write x as

x =
∑
i

civi

where
∑

i c
2
i = 1. Suppose we computeMkx, which can be computed using k matrix-vector product,

which takes O(knd) time in total.

Mkx = (V Σ2V T)k
∑
i

civi =
∑
i

ciσ
2k
i vi

Since x is random, we would expect the coe�cients ci to be of similar magnitude. However,
because the 2k power of the singular values are very di�erent, we expect the sum to be dominated
by σ2k1 v1. Thus, M

kx ≈ c1σ2k1 v1 and we can recover an approximation of vi simply by normalizing
Mkx to length one.

Theorem 3.1. Suppose x is a vector such that c1 ≥ δ. Let w = 1
‖Mkx‖M

kx with k = ln(1/(εδ))
2ε . Let

w′ be the projection of w on the span of singular vectors with singular values smaller than (1− ε)σ1.
We have ‖w′‖ ≤ ε.

Proof. Let v1, . . . , vt be the singular vectors with singular values at least (1− ε)σ1. Let vt+1, . . . , vd
be the singular vectors with singular values smaller than (1− ε)σ1. Because v1, . . . , vd form a basis,
we can write x as

x =
∑
i

civi

with
∑

i c
2
i = ‖x‖2 = 1. First we look at the length of Mkx.

‖Mkx‖2 = ‖
∑
i

σ2ki civi‖2 =
∑
i

σ4ki c
2
i ≥ σ4k1 δ2

Mkx consists of two components: its projection on the span of v1, . . . , vt and its projection on the
span of vt+1, . . . , vd. The length of its projection on vt+1, . . . , vd is∑

i≥t+1

σ4ki c
2
i ≤ (1− ε)4kσ4k1

where we used
∑

i c
2
i = 1.

3

Thus, for the normalized vector w with ‖w‖ = 1, we have

‖w′‖ ≤ (1− ε)2kσ2k1
σ2k1 δ

≤ e−2kε

δ
≤ ε

For random vector x, it turns out that with constant probability, we have c1 ≥ 1/(20
√
d).

4 Spectral clustering

There are many applications of SVD. In this section, we consider a toy example of clustering and
use SVD to �nd the clusters.

Suppose that there is a graph (e.g. a social network) with n nodes belonging to two communities
S1, S2. The edges are generated randomly and independently. For two nodes in the same community,
there is an edge between them with probability p. For two nodes in di�erent communities, there is
an edge between them with probability q < p and q = Ω(logn/n). We are given a random graph
generated using this process. The goal is to recover the communities with high probability.

To solve this problem, let's �rst consider the expectation C of the adjacency matrix. We observe
that the expectation C has rank 2!

Because each node has n possible edges, each of them is present with probability at least q =
Ω(log n/n), we expect a concentration phenomenon and the realized adjacency matrix is close to
the expectation. Thus, the idea is to �nd a rank 2 approximation of the adjacency matrix and use
that to recover the communities.

The algorithm is of the following form: compute a rank 2 matrix M̃ that best �t the adjacency
matrix M . We expect that most columns of M̃ are close to the columns of C but we don't know
which one is close. The idea is to just take a random column of M̃ and then partition the rest of
the columns based on their distance to the chosen column.

There is a formal proof showing that the procedure �nds the partition with high probability but
we will not cover it here.

One can also generalize the more than 2 clusters. This model then suggests the following
approach for �nding k clusters: �nd the best rank k approximation to the adjacency matrix and
then cluster the rows/columns of the resulting matrix.

4

