
Hashing with real numbers

Huy L. Nguy�ên

1 Consistent Hashing

In this section, we consider an application of hashing to content delivery networks (CDNs). In a

distributed system with a lot of machines, an important problem is to deal with machines joining

and leaving the network. Suppose we have Θ(m) web servers that serve contents for our websites.

To balance the load, we would like to distribute data evenly among the servers.

A good solution is to use a hash function that assigns each piece of content randomly to the

machines. However, what should we do when a new server joins the network?

• Do nothing. No data would need to move but the new machine is completely unused.

• Change to a new hash function e.g. from modm to mod(m + 1). The problem is that most

of the data might need to move.

A solution to this problem is proposed by Karger et al. The basic design is as follows.

• Both machines and items are mapped to the cyclic interval [0, 1]

• Each item is stored in the �rst machine to its right (with wrap around). That is, if there is

no machine with a larger value than the item then the item is assigned to the machine with

the smallest value.

To implement this scheme, we need to maintain a dynamic binary search tree whose keys are

the machine values. To insert an item, we �nds its successor in the tree and add the item to the

corresponding machine. To insert a machine, we �nd its successor and let it take over items from

the successor. To delete a machine, we �nd its successor and transfer over the items.

We will show that this scheme balance the load among the machines.

Lemma 1.1. With high probability, no machine own more than O
(
logm
m

)
fraction of the interval.

Proof. We divide the interval [0, 1] into sub-intervals of length 2 lnm
m . The probability that a sub-

interval has no machine in it is (
1− 2 lnm

m

)m

≤ 1

m2

By the union bound, with probability 1 − 1
2m lnm , every sub-interval has at least one machine.

Therefore, no machine owns more than 4 lnm
m fraction of the interval.

Question: What about the minimum load?

To see this, we can divide the interval intom2 sub-intervals of length 1/m2 each. By the birthday

paradox, with constant probability, two machine will collide in the same sub-interval. Thus, with

constant probability, the minimum load is O(1/m2).

1

For each machine, the expected fraction of the interval it is responsible for is 1
m and we showed

that the maximum load is bounded by O(logm) times the expected load. How do we change the

scheme so that the maximum load is within a constant factor of the average load? (remember the

balls and bins lesson?)

Lemma 1.2. When a new machine joins, the expected fraction of items that have to move is 1
m+1 .

When a new machine joins, the only items that have to move are the ones allocated to the

new machine. This set of items is the same as if the new machine existed from the beginning. By

symmetry among the machines, the expected fraction of items that are allocated to the new machine

is 1
m+1 .

2 Counting distinct elements

In this section, we consider another interesting application of hashing. In some settings such as

network monitoring on routers, we would like to perform fast computation in a very little amount

of space, possibly smaller than the size of the input. One possible task is that we would like to

count the number of distinct network connections going through our router. This task can be done

trivially by maintaining a hash table whose keys are the addresses of the source-destination pairs

that are communicating. However, this would require a hash table of size at least the number of

connections. We will discuss a solution to approximate the number of connection while using very

little memory.

We abstract the problem as follows. The router receives a stream of numbers x1, x2, . . . , xn. We

would like to estimate k, the number of distinct elements in the stream.

As mentioned earlier, we could store all the distinct elements that are seen so far and upon

receiving a new number, we check if it matches an earlier one. However, this approach takes Θ(k)
memory.

Another approach is to take samples from the stream i.e. keep an element with probability p
and throw it away with probability 1−p, then try to estimate the number of distinct elements from

the samples. The problem is that it is very hard to distinguish between two streams

a1, a1, . . . , a1︸ ︷︷ ︸
n−k+1 times

, a2, a3, . . . , ak, and a1, a1, . . . , a1︸ ︷︷ ︸
n times

when n� k.
A solution to this problem is as follows. We use a hash function h : U → [0, 1] to map all the

elements to the interval [0, 1]. The algorithm stores the minimum hash value of all the elements in

the stream. Notice that this requires storing exactly 1 number Y . When a new element xi arrives,
the algorithm computes its hash value h(xi) and check if it is smaller than Y . If so, the algorithm

updates Y ← h(xi).
What is the relation between Y and the number of distinct elements k?

Lemma 2.1.

E[Y] =
1

k + 1

Var[Y] ≤ 1

(k + 1)2

2

Proof. First we calculate the probability that Y exceeds a value z. Notice that mini h(xi) ≥ z if

and only if all k hash values are greater than z.

Pr[Y ≥ z] = (1− z)k

Thus, we can calculate the expectation of Y .

E[Y] =

∫ 1

0
Pr[Y ≥ z]dz = −(1− z)k+1

k + 1

∣∣∣1
0

=
1

k + 1

To calculate the variance we need to compute E[Y 2].

E[Y 2] =

∫ 1

0
Pr[Y 2 ≥ z]dz =

∫ 1

0
(1−

√
z)kdz

Let u =
√
z. We have du = dz

2
√
z

= dz
2u . Thus,

E[Y 2] =

∫ 1

0
2u(1− u)kdu

=

∫ 1

0
2((1− u)k − (1− u)k+1)du

=

(
−2(1− u)k+1

k + 1
+

2(1− z)k+2

k + 2

∣∣∣1
0

) ∣∣∣1
0

=
2

(k + 1)(k + 2)

Thus, Var[Y] = E[Y 2]− (E[Y])2 ≤ 1
(k+1)2

.

Given the expectation of Y , a way to estimate k is to compute 1
Y − 1. However, the variance

of Y is quite high so we cannot be sure that our estimator is close to k. A common technique

to reduce the variance is to repeat the procedure with t independent hash functions h1, h2, . . . , ht
and use them to compute t random variables Y1, . . . , Yt. Now we can estimate the expectation

much more accurately with Ŷ = Y1+···+Yt
t and estimate k̂ = 1

Ŷ
− 1. Notice that E[Ŷ] = E[Y] but

Var[Ŷ] = Var[Y]/t. Thus, if we set t = 100/ε2 then by Chebyshev inequality,

Pr[|Ŷ − E[Ŷ]| ≥ εE[Ŷ]] ≤ 1

tε2
≤ 1/100

In other words, our estimate is within a 1±ε multiplicative factor of the true number of distinct
elements.

Note that our analysis so far assume that the hash function is fully independent. It is possible

to modify the algorithm to use much weaker hash family (such as the ones we have covered so far)

but we will not cover that here.

3

