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In the course of our studies, we have encountered many optimizations problems: �nding the

shortest paths, �nding the minimum spanning trees, �nding the minimum cuts, etc. We can model

the decisions we need to make using variables and the constraints of the problems as equations

involving these variables. Amazingly enough, the objective and constraints of many problems can

be expressed as a system of linear inequalities.

The feasible region (the set of points satisfying the linear inequalities) is called a polytope. The

region is convex: for any two points x and y in it, the line segment connecting x and y lies entirely

in the region.

In linear programming, the goal is to optimize (maximize or minimize) a linear objective function

over the feasible region. The general form of a linear program is

min cTx

Ax ≥ b
x ≥ 0

Here ≥ denotes component-wise greater than or equal.

This general form can express all types of linear programs. To maximize rather than minimize

an objective, simply negate the coe�cients. To include an inequality such as 5x+ y ≤ 3, rewrite it
as −5x− y ≥ −3. To include an equality 3x = y + 1, rewrite it as two inequalities 3x− y − 1 ≥ 0
and −3x+y+1 ≥ 0. To include an unconstrained variable x, one can replace x with x+−x− where

x+, x− are two new non-negative variables.

An important fact about linear programs is that they can be solved in polynomial time and

in fact, there are e�cient softwares for this task. We will mostly use this fact as a tool to solve

our problems but in due time, we will also see a glimpse of the theory behind algorithms for linear

programs.

1 Modeling tasks as linear programs

1.1 Assignment Problem

Suppose we have n jobs and n machines. Since the machines are di�erent and jobs have di�erent

requirements (memory, disk space, CPU, etc), the running time of di�erent jobs on di�erent ma-

chines are di�erent. Let ci,j be the running time of job i on machine j. We would like to assign one

job per machine so as to minimize the sum of the processing times across all machines.

Let xi,j be the variable indicating whether we assign job i to machine j. We hope that this

variable will be either 0 or 1 but that is not expressible in an LP so we relax it to the constraints

0 ≤ xi,j ≤ 1 ∀i, j
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Since each machine j can process 1 job, we have the constraint:

n∑
i=1

xi,j = 1 ∀j

Each job i is assigned to one machine so we have the constraint:

n∑
j=1

xi,j = 1 ∀i

Finally, we would like to minimize the total processing time:

min
∑
i,j

ci,jxi,j

Interestingly this linear program always has an integral optimal solution i.e. all variables xi,j
are either 0 or 1. Thus, solving the LP actually gives the optimal assignment.

1.2 Shortest path

Suppose we have a graph G = (V,E). The edge from i to j has weight wi,j . We would like to �nd

the shortest path from vertex s to vertex t.
We use a variable xi,j to indicate whether an edge (i, j) is used in the shortest path. Again we

hope that it is either 0 or 1 but we need to relax it to the constraints

0 ≤ xi,j ≤ 1 ∀(i, j) ∈ E

Exactly one edge going out of s must be used in the shortest path:∑
(s,j)∈E

xs,j = 1;
∑

(i,s)∈E

xi,s = 0

Exactly one edge going into t must be used in the shortest path:∑
(i,t)∈E

xi,t = 1;
∑

(t,j)∈E

xt,j = 0

For all other vertices u, the number of incoming and outgoing edges in the shortest path must be

the same: ∑
(i,u)∈E

xi,u −
∑

(u,j)∈E

xu,j = 0 ∀u 6= s, t

Interestingly this LP also has an integral optimal solution. Thus, solving the LP gives the

shortest path from s to t.

1.3 `1 regression

Suppose you are trying to build a model to explain student's performance. The performance of a

student in a course is a function of 1) the di�culty of the course, 2) the aptitude of the student,

and 3) random noise. Thus, we hypothesize that the student i's grade in course j is modeled by the

following equation:

Gi,j = ai + dj + εi,j
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where ai is the aptitude of student i, dj is the di�culty of course j and εi,j is a noise term.

We would want the model to have as small noise as possible. Thus we have the following

optimization problem, which is an LP.

min
∑
i,j

|εi,j | :

Gi,j = ai + dj + εi,j ∀i, j

2 Duality

An important question in linear programming is to be able to certify the optimality of the solution.

Consider a small example:

minx+ y subject to

3x+ y ≥ 6

x+ 3y ≥ 4

2x+ y ≥ 5

x, y ≥ 0
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If the software gives us the solution x = 11/5, y = 3/5, how good is this solution? This question

is intimately connected to the question of giving an lower bound on the solution.

One possible lower bound comes from adding up 1/4 times the �rst inequality plus 1/4 times

the second inequality:

x+ y =
1

4
(3x+ y) +

1

4
(x+ 3y) ≥ 1

4
· 6 + 1

4
· 4 =

5

2

Question: can you �nd a better lower bound?

This question brings us to the concept of duality. For each linear program, there is an associated

dual linear program:

Primal

min cTx

Ax ≥ b
x ≥ 0

Dual

max bT y

AT y ≤ c
y ≥ 0

Notice that for each constraint in the original problem, there is a corresponding variable in the

dual problem. Similarly, for each variable in the original problem there is a corresponding constraint

in the dual problem.

Question. Write the dual linear programs for the assignment problem and the shortest path

problem.
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Notice that every solution for the dual linear program gives a lower bound on the value of the

primal problem.

Theorem 2.1 (Weak duality). Consider an arbitrary feasible solution y for the dual LP and an

arbitrary feasible solution x for the primal LP. we have

xT c ≥ yT b

Proof. Because x is a feasible solution for the primal LP:

Ax ≥ b

Because y ≥ 0, we can take dot product of both sides with y and obtain yTAx ≥ yT b.
Similarly, because y is a feasible solution for the dual LP:

AT y ≤ c

Because x ≥ 0, we can take dot product of both sides with x and obtain xTAT y ≤ xT c
Combining the two inequalities, we obtain xT c ≥ yT b

Theorem 2.2 (Strong duality). If the primal and dual problems are feasible then their optimal

values are equal.

To prove the theorem, we will make use of a useful theorem:

Lemma 2.3 (Separating hyperplane theorem). Let P be a closed convex set and x be a point not

in P . There exists a vector w such that wTx > maxz∈P w
T z.

The theorem is intuitive but proving it requires some formal math so we will skip it. We now

proceed to prove the duality theorem.

Lemma 2.4. Let x∗ be the optimal solution for the primal LP. Let S be the set of constraints j that

are tight i.e. (Ax∗)j = bj. There exist {λj ≥ 0}j∈S such that ci =
∑

j∈S λjAji for all i.

Proof. Suppose for contradiction that no such {λj} exist. Let Aj denote row j of the constraint

matrix A. Let

P =

v
∣∣∣∣∣∣v =

∑
j∈S

λjAj for some {λj ≥ 0}j∈S


i.e. P is the set of all linear combinations with nonnegative coe�cients of the rows of A in S.

Observe that P is closed and convex (why?) and by our assumption, c 6∈ S so there exists some

w such that wT c > maxv∈P w
T v. Note that this means wT c > 0 and wTAj ≤ 0 ∀j ∈ S (why?).

Consider the vector x − εw for a tiny positive constant ε. We will show that this is a feasible

solution with better objective value than x, which is a contradiction:

• For constraint j 6∈ S, because AT
j x > bj and ε is su�ciently small, AT

j (x − εw) > bj . For

constraint j ∈ S, we have AT
j (x− εw) = bj − εAT

j wbj ≥ bj because AT
j w ≤ 0.

• The objective value decreases since cT (x− εw) = cTx− εcTw < cTx.
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Thus, the objective coe�cients is a conic combination of the coe�cients in the constraints in S.
Consider a set of values for λj ≥ 0 so that c =

∑
j λjAj and set λj = 0 ∀j 6∈ S.

Observe that

• λ ≥ 0

• ATλ =
∑

j λjAj = c

• bTλ =
∑

j∈S bjλj =
∑

j∈S(x
TAj)λj = xT c

Thus, λ is a solution to the dual problem with dual objective value exactly equal to the optimal

primal objective value.

3 Special cases of the duality theorem

There are many interesting special cases of the duality theorem for linear programming. We will

mention an example, which many of you might have seen in an undergraduate course.

Consider the maximum �ow problem. We are given a directed graph G = (V,E) with source s
and sink t. Each edge e has a capacity ce. The �ow on each edge must be at most its capacity and

at any vertex other than s, t, the �ow must be conserved: the total incoming �ow must be equal to

the total outgoing �ow. We would like to maximize the total �ow we can send from s to t.
Let's formulate this problem as a linear program. Let P be the set of directed simple paths from

s to t. Let xp be the variable measuring the amount of �ow we are sending on the path p. We have

max
∑
p∈P

xp :∑
p:e∈p

xp ≤ ce ∀e ∈ E

xp ≥ 0 ∀p ∈ P

Let's write the dual of this linear program.

min
∑
e∈E

ceye :∑
e∈p

ye ≥ 1 ∀p ∈ P

ye ≥ 0 ∀e ∈ E

Notice that this dual represents a fractional version of the minimum cut problem: each edge is

picked up to a fraction ye with the constraint that on any path from s to t, the total fraction of

edges being picked is at least 1. The usual minimum cut problem restricts the variables ye to be

either 0 or 1. It turns out that this LP also has an optimal integral solution so its value is equal to

the value of a cut in the graph.

Thus, LP duality implies that the maximum �ow is equal to the capacity of the minimum cut.
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4 Approximation algorithms with linear programs

We have seen several examples where the LP gives exact solution for discrete optimization problems.

In general, there might be no integral optimal solution for an LP relaxation and we cannot obtain

the optimal solution for the discrete problem. Nonetheless, we can use the fraction solution to

construct an approximation solution that is close in quality compared with the optimal solution.

We will explore a few examples of this approach.

4.1 Vertex cover

Consider a graph G = (V,E) where each node u has a weight wu ≥ 0. The goal is to �nd a vertex

cover, which is a subset of vertices that is adjacent to all edges in the graph. Furthermore, we would

like to �nd the vertex cover of minimum total weight.

We can write this problem as an integer linear program as follows.

min
∑
u∈V

wuxu :

xu + xv ≥ 1 ∀(u, v) ∈ E
xu ∈ {0, 1}

To obtain an LP, we can relax the integral constraints:

min
∑
u∈V

wuxu :

xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xu ≤ 1

From the fractional solution, we can simply round all xu up to 1 if xu ≥ 1/2 and down to 0 if

xu < 1/2. Let S be the set of vertices selected by the algorithm. We will show that this is a valid

solution whose weight is at most twice that of the optimal solution.

Lemma 4.1. S is a valid vertex cover.

Proof. For each edge (u, v), we know xu+xv ≥ 1 so either xu or xv is at least 1/2. Therefore, either
u or v is selected in S and the edge (u, v) is covered.

Lemma 4.2. The weight of S is at most twice that of the optimal solution.

Proof. Because we only pick vertices with xu ≥ 1/2, the weight of S is at most 2 times
∑

u xuwu.

Because the LP is a relaxation, the optimal integral solution is a valid solution for the LP. Thus,

the LP value is at most the weight of the optimal integral solution. Thus, the weight of S is at most

2 times the weight of the optimal integral solution.

4.2 MAX2SAT

A 2CNF formula consists of n Boolean variables x1, . . . , xn and m clauses of the form y ∨ z, where
each y, z is called a literal, which is either a variable or its negation. Given a formula, our goal is to

set the variables so as to maximize the number of satis�ed clauses.
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We start with an integral formulation. We use variable zj to indicate whether clause j is satis�ed
or not.

max
m∑
j=1

zj

yj1 + yj2 ≥ zj ∀j
zj ≤ 1 ∀jxi ∈ {0, 1}

where yj1 is the shorthand for xi if the �rst literal in clause j is variable i and for 1−xi if the literal
is the negation of variable i.

We relax the integral formulation to obtain an LP by replacing xi ∈ {0, 1} with 0 ≤ xi ≤ 1.
Now to obtain an integral solution, independently for each variable i, we randomly set it to 1

with probability xi and to 0 with probability 1− xi.

Lemma 4.3. The expected number of satis�ed clause is at least 3
4 times the optimal value.

Proof. We will prove that the probability a given clause is satis�ed is at least 3zj/4. The lemma

then follows from linearity of expectation.

Suppose the clause is xa ∨ xb. Notice that at the optimal solution, zj = min(1, xa + xb) since
the LP tries to maximize

∑
j zj .

The probability that randomized rounding satis�es this clause is exactly

1− (1− xa)(1− xb) = xa + xb − xaxb

Consider two cases. First, consider the case xa + xb ≤ 1. We have xaxb ≤ (xa + xb)
2/4 ≤

(xa + xb)/4. Thus,

xa + xb − xaxb ≥
3

4
(xa + xb) ≥ 3xj/4

Next, consider the case t = xa + xb ≥ 1. We have xaxb ≤ (xa + xb)
2/4 = t2/4. Thus,

xa + xb − xaxb ≥ t− t2/4 ≥ 3/4 ∀t ∈ [1, 2]

Thus, in both cases, the probability that randomized rounding satis�es a clause is at least 3zj/4.

4.3 Circuit routing?
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