
High dimensional geometry and dimension reduction

Huy L. Nguy�ên

In most modern dataset, we have to deal with data in high dimensions. Many classical algorithms

do not deal with the high dimensionality very well: the running time is typically exponential in the

number of dimensions. In this note, we will look at how objects behave in high dimensions and the

tools for dealing with them.

For a vector x, its `2 norm is ‖x‖2 =
√∑

i x
2
i and its `1 norm is ‖x‖1 =

∑
i |xi|. For any two

vectors x, y, their Euclidean distance is ‖x− y‖2 and their Manhattan distance is ‖x− y‖1.
Next we explore a few facts in high dimension to get used to the geometry.

Example 1. How many nearly orthogonal vectors can we have in a d dimensional space, such

that all pairwise angles are between 89 and 91 degrees?

In R2, we can have 2. In R3, we can have 3. It turns out in Rd, we can have exp(cd) for some

constant c > 0.
Example 2. What are the volumes of the cube {x : 0 ≤ xi ≤ 1} and the unit ball {x : ‖x‖2 ≤ 1}

in d dimensions?

The volume of the cube is easy to compute, it is 1.

It turns out that the volume of the unit ball is πd/2

(d/2)! . This is a 2Θ(d log d) factor smaller than the

volume of the cube.

Example 3. If we sample a random point from a unit ball in d dimension, what is the expected

distance from that point to the center?

In 1 dimension, that expected distance is 1/2. It turns out that in high dimensions, the expected

distance is very close to 1. To see why, let's compare the volume of the unit ball and the volume of

the ball with radius 0.99. The smaller ball accounts for only 0.99d � 1 fraction of the larger ball.

Thus, most points are at distance larger than 0.99 from the center.

1 Number of nearly orthogonal vectors

We will show that there are exponentially many nearly orthogonal vectors in Rd. Recall that the

cosine of the angle between two vectors x, y is 〈x,y〉
‖x‖·‖y‖ .

Lemma 1.1. Let x be a �xed vector of length 1 and |xi| ≤ 1/
√
d ∀i. Let y be a random vector where

each coordinate is chosen randomly from {1/
√
d,−1/

√
d}. We have

Pr[〈x, y〉 > c] ≤ exp(−c2d/3)

Proof. We have E[〈x, y〉] = 0. The lemma follows from the Cherno� bound.

By the Lemma, we see that if we pick two random vectors whose coordinates are chosen randomly

from {1/
√
d,−1/

√
d} then with probability 1 − 1/n2, their dot product is at most O(

√
log n/d).

If we pick n vectors, by the union bound, we have with probability at least 1/2, the dot products
among them are all bounded by O(

√
log n/d). We see that n can be as large as exp(Θ(d)) while

keeping the dot products bounded by 0.01.

1

2 Dimension reduction

Given n points in d dimensional space, we would like to �nd a representation of them in lower

dimensions m while preserving all distances up to 1± ε factor.

Lemma 2.1 (Johnson-Lindenstrauss lemma). It su�ces to have m = O(log n/ε2) and in fact, the

mapping can be a linear map.

Some basic strategies that do not work: sample coordinates (e.g. vectors with mostly zeroes

and only few non-zeroes), group coordinates and add them up (e.g. coordinates of opposite signs

canceling each others).

Proof. Consider m vectors x(1), . . . , x(m) ∈ Rd whose coordinates are i.i.d. from { −1√
m
, 1√

m
}. The

embedding of a vector v is

f(v) = (〈x(1), v〉, . . . , 〈x(m), v〉)

Let z = u−v. Let's compute the expected value of the squared distance between f(u) and f(v):

E[‖f(u)− f(v)‖2] = E

[
m∑
i=1

(〈x(i), z〉)2

]
= mE

[
(〈x(1), z〉)2

]
= mE

 d∑
i=1

d∑
j=1

x
(1)
i x

(1)
j zizj



Notice that for i 6= j, E[x
(1)
i x

(1)
j] = 0. For i = j, we have E[x

(1)
i x

(1)
j] = 1

m . Thus,

E[‖f(u)− f(v)‖2] = mE

[
d∑
i=1

1

m
z2
i

]
= ‖z‖2 = ‖u− v‖2

Next we need to show that it is concentrated around this value. To do this we need a variant of

the Cherno� bound.

Lemma 2.2. Let µ = E[‖f(x)‖2] and let β ∈ (0, 1). There exists constants c1, c2 such that

Pr[‖f(x)‖2 ≥ (1 + β)µ] ≤ exp(−c1β
2µ)

Pr[‖f(x)‖2 ≤ (1− β)µ] ≤ exp(−c2β
2µ)

We can choose β = ε/2 and m = O(log n/ε2). We have that for any two vectors u, v, their
distance is preserved with probability at least 1 − 1/n3. By the union bound over all

(
n
2

)
pairs of

vectors, the distances among n vectors are all preserved with probability at least 1− 1/n.

3 Nearest neighbor search

Next we consider the problem of �nding the nearest neighbor in a database of points. That is, we

are given a dataset with n points. For any query point q, we would like to �nd the point in the

database that is closest to q. In low dimension, a classical solution is the Voronoi diagram. The

2

Voronoi cell of a point p is simply the set of points that are closer to p than all other points. In 2D,

the diagram consists of O(n) segments. Thus, we can store the diagram and given a query point q,
use (a complicated variant of) binary search trees to �nd the nearest point in the database.

Question: how complicated is a Voronoi diagram in 3D? can it be described using O(n) seg-

ments?

Unfortunately the description of the Voronoi diagram scales as ndd/2e so it quickly becomes

infeasible to store in higher dimensions.

One approach to deal with the higher dimension case is to relax the problem: we are only

required to �nd an approximate solution rather than the nearest point. That is, given a query point

q and an approximation factor c > 1. If the nearest neighbor to q in the database is at distance r
then the algorithm needs to return a point in the database at distance at most c · r.

In fact, we will focus only on a near neighbor variant. There is a reduction from the nearest

version to this version. Given an approximation factor c and a distance threshold r, the algorithm
needs to do the following: if there exists a point within distance r from the query then the algorithm

needs to return a point within distance c · r. If no such point exists, the algorithm can do anything.

Our algorithm will use inspiration from the solution for �nding exact match in a database:

hashing. In hashing, we would like to have the property that exact match are hashed to the same

value with probability 1 and di�erent keys are hashed to the same value with very small probability.

In our setting, we would like near points to be hashed to the same value with high probability and

far points are hashed to the same value with low probability. The following de�nition of locality

sensitive hashing (LSH) formalizes this idea.

De�nition 3.1. A family of hash functions h : Rd → U is (p1, p2, r, cr)-sensitive for the distance

metric D if for any p, q:

• If D(p, q) ≤ r then Pr[h(p) = h(q)] ≥ p1

• If D(p, q) ≥ cr then Pr[h(p) = h(q)] ≤ p2

To illustrate the idea, we will consider the Hamming metric. That is, the points we consider are

bit strings of length d and the distance between two bit strings is simply the number of bits where

they di�er.

3.1 An LSH family for Hamming distance

Our hash family is very simple. There are d hash function, the ith function simply returns the ith
bit of the string.

Lemma 3.2. The family is (1− r/d, 1− cr/d, r, cr)-sensitive.

Proof. When two points u and v are at distance r, that means they agrees on d−r bits and disagree

on r bits. Thus,

Pr
h∼H

[h(u) = h(v)] =
d− r
d

= 1− r/d

The calculation is similar for distance c · r.

3.2 From LSH to approximate near neighbor

The basic hash function gives some separation in the collision probability between near and far

points. However, in the dataset, there might be only 1 near point but a lot (up to n) of far points.
Thus, we will still see a lot of collision with the far points. Our �rst idea is to reduce the collision

3

probability by using many independent hash functions. We will use k independent hash functions

h1, . . . , hk and the hash value is simply the concatenation of the hash value of each of these hash

functions.

g(p) = (h1(p), h2(p), . . . , hk(p))

Using this concatenated hash function g, we can build a hash table containing all the points in the
database. The algorithm will have l independent copies of the hash function g above: g1, g2, . . . , gl,
each with their own hash table containing all the points in the database. Given the query point q,
we do the following:

• retrieve the points from the buckets g1(q), g2(q), . . . , gl(q) until either we get all the points

from these buckets or we have retrieved more than 3l points in total.

• return the closest point to q among the points we found.

The space to store each hash table is O(n) and we have l tables so the total space of the algorithm
is O(nl). The query time is dominated by the time to compute the distance between q and the

retrieved points, which is O(dl).
We will now show that the algorithm �nds an approximate near neighbor to q with at least a

constant probability.

Lemma 3.3. For l = nρ/p1 hash functions, where ρ = log(p1)/ log(p2), the algorithm solves the

c-approximate near neighbor problem with constant probability.

Proof. To solve the problem, we only need to consider the case where a near neighbor exists. Suppose

there is a point p in the database P where D(p, q) ≤ r. Let FAR(q) = {p′ ∈ P : D(p′, q) > cr} the
set of points far from q. Let Bi(q) = {p′ ∈ P : gi(p

′) = gi(q)} the set of points colliding with q.
We will show that the following two events happen simultaneously with constant probability:

• E1 :
∑

i |Bi(q) ∩ FAR(q)| ≤ 3L: the event that the number of false positives is bounded by

3L.

• E2 : gi(p) = gi(q) for some i ∈ {1, 2, . . . , l}: the event that p collides with q in some hash

table.

Let k = d− log n/ log(p2)e. Let's consider a �xed table i. What is the probability that a far

point p′ collides with q?

Pr[gi(p
′) = gi(q)] = pk2 = p

d− logn/ log(p2)e
2 ≤ 1/n

By linearity of expectation, we have E[|Bi(q) ∩ FAR(q)|] ≤ 1. Again, by linearity of expectation,

we have

E[
∑
i

|Bi(q) ∩ FAR(q)|] ≤ L

Thus, by Markov's inequality, event E1 fails with probability at most 1/3.
Next, what is the probability that the near point p collides with q?

Pr[gi(p) = gi(q)] = pk1 = p
d− logn/ log(p2)e
1 ≥ p1−logn/ log(p2)

1 = p1n
−ρ = 1/l

The probability that E2fails i.e. the near point never collides with q in any table is at most

(1− 1/l)l ≤ 1/e.
By the union bound, the probability that either E1 or E2 fails is at most 1/3 + 1/e < 0.71.

Thus, the algorithm succeeds with probability at least 0.29.

4

Notice that the parameter ρ = log(p1)/ log(p2) governs both the space and the query time of

the algorithm: the space is O(n1+ρ) and the query time is O(dnρ).

Lemma 3.4. For Hamming distance, ρ ≤ 1/c.

Proof. We would like to show log(p1)/ log(p2) ≤ 1/c or equivalently pc1 ≥ p2. Substituting in

p1 = 1− r/d and p2 = 1− cr/d, we obtain:

(1− r/d)c ≥ 1− cr/d

This is true because (1− x)c ≥ 1− cx for all x ∈ (0, 1), c ≥ 1.

The value of ρ depends on the distance metric. It turns out that for Euclidean distance, it is

possible to get ρ ≤ 1/c2.

5

