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In the course so far, we have typically described problems where the input is given and the
algorithm needs to perform some optimization. In many situation, the inputs come from people
with economic incentives and they can adapt their behavior depending on the algorithm as well
as the behavior of other people. In this note, we make a brief foray into game theory and related
algorithmic problems.

1 Zero-sum games

A game for us is a model for the interaction among agents. Each agent has a payo� function and
his goal is to maximize the payo�.

A simple class of games is the zero-sum two player games. There are two players: player 1
has m moves and player 2 has n moves. First player one chooses a move i and then player two
makes a response j. The outcome is that player 1 pays Aij to player 2. The game can be described
completely by an m× n payo� matrix A.

An example of a zero sum game is rock/paper/scissor. This game is zero sum because the total
payo� is zero. This is not true for all games e.g. in war all side might lose.

An equilibrium is a pair of strategy s1, s2 such that each is the best response to the other.
Suppose player 1 plays �rst with move i0. To maximize payo�, player 2 will choose j0 =

argmaxj Ai0,j . However, if player 2 play �rst with move j0 then player 1 will response with move
i1 = argmaxiAi,j0 . In general, i0 6= i1 and there is no equilibrium. One can observe this fact from
the example of rock/paper/scissor.

von Neumann realized that if instead of restricting the strategy to play only one move and
allowing strategy that play a random move according to some probability distribution, a so-called
mixed strategy, there always exists an equilibrium.

Suppose player 1 plays move i with probability xi. We have xi ≥ 0 ∀i and
∑

i xi = 1. Player
2 plays move j with probability yj . We have yj ≥ 0 ∀j and

∑
j yj = 1. The expected payo� for

player 2 is xTAy.
If player 1 plays �rst then the expected payo� for player 2 is minxmaxy x

TAy. On the other
hand, if player 2 plays �rst then the expected payo� is maxy minx x

TAy. von Neumann's theorem
states that these two amounts are the same and thus, neither player has an incentive to change their
strategy after seeing the other's strategy.

Theorem 1.1. minxmaxy x
TAy = maxy minx x

TAy

It turns out that this theorem is a consequence of linear programming duality.

2 Non-zero sum games

Now we consider the case where the total payo� is not zero. Now we describe the outcome using
two matrices A and B. If payer 1 plays move i and player 2 plays move j then player 1 gets Aij
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and player 2 gets Bij . A Nash equilibrium is a pair of strategies, one for each player, such that each
one is the optimal response to the other i.e. neither has an incentive to change their strategy after
seeing the other's strategy.

One common example is prisoner's dilemma. There are two prisoners who are put in separate
rooms and questioned separately. They have two choices: to betray the other or to stay silent.

hhhhhhhhhhhhhhhhhPrisoner One
Prisoner Two

silent betray

silent Each gets 3 years One gets 5 years, Two is free

betray One is free, Two gets 5 years Each gets 4 years
Regardless of what the other prisoner is doing, each of them has an incentive to betray because

they always get a better outcome. Thus, the equilibrium is that both of them betray the other.
This is much worse than the socially optimal strategy of both of them staying silent.

Another common example is the game of chicken. Two drivers driving their cars at high speed
toward crashing into each other. Each of them has two choices: swerve to avoid the collision
(chicken) or go straight on (dare). If they both play dare then they risk injury. If both play chicken
then they both live. If one play dare and one play chicken then the one who plays chicken looks
bad and the one who play dare gains reputation.

XXXXXXXXXXXDriver 1
Driver 2

chicken dare

chicken 4/4 1/5

dare 5/1 0/0
There are two equilibria (chicken, dare) and (dare, chicken). Note that the socially optimal

(chicken, chicken) is not an equilibrium.
Nash shows that for any payo� matrices A,B, there exists a mixed equilibrium.

3 Approximate Nash equilibrium

Consider a game with all payo�s in the range [−1, 1].

De�nition 3.1. A pair of strategies x, y is an ε-approximate Nash equilibrium if

• x is an ε-approximate best response to y i.e. xTAy ≥ maxi〈Ai, y〉 − ε

• y is an ε-approximate best response to x i.e. yTBTx ≥ maxj〈BT
j , x〉 − ε

Theorem 3.2 (Lipton-Markakis-Mehta). Consider a two player game with n × n payo� matrices

A,B. There is an ε approximate Nash equilibrium where each strategy is an uniform sample from a

multi-set of size O(log n/ε2).

Proof. Consider a Nash equilibrium with strategies x and y. Suppose X,Y are multisets of k
independent random samples from the strategies x and y, respectively. Let x̂i be the fraction of
times strategy i is sampled for the row player and similarly for ŷj . We will show that for su�ciently
large k, the following conditions hold simultaneously with positive probability:

• For all i, the payo� for row player with strategy i is almost the same whether the column
player plays y or ŷ i.e. |(Ay)i − (Aŷ)i| ≤ ε

• For all j, the payo� for column player with strategy j is almost the same whether the row
player plays x or x̂ i.e. |(xTB)j − (x̂TB)j | ≤ ε

• |xAy − x̂Ay| ≤ ε
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• |xBy − xBŷ| ≤ ε

When the �rst condition holds, the payo� for the row player with any strategy is almost the
same against y and ŷ. Because x is the best response for y i.e. xTAy = maxi〈Ai, y〉, we conclude
that

x̂TAŷ ≥ x̂TAy − ε (because |(Ay)i − (Aŷ)i| ≤ ε)

≥ xAy − 2ε

≥ max
i
〈Ai, y〉 − 2ε

≥ max
i
〈Ai, ŷ〉 − 3ε (because |(Ay)i − (Aŷ)i| ≤ ε)

Similar reasoning works for the column player. To prove the �rst condition, notice that E(Aŷ)i =
(Ay)i. By the Cherno� bound, with k = O(log n/ε2), we have |(Ay)i − (Aŷ)i| ≤ ε with probability
at least 1−1/n2. Thus, by the union bound over all choices of i, the �rst condition holds. A similar
reasoning works for the other conditions.

This theorem implies an algorithm for �nding an approximate Nash equilibrium: try all possible
strategies of the above form. This algorithm takes time nO(logn/ε2).

3


