
Coding theory

Huy L. Nguy�ên

In this note, we explore error-correcting codes, a solution for protecting against data corruption

and data loss. To motivate the study, we start with a classical setup for storing data on a magnetic

storage device considered by Hamming in 1950. We would like to store data in blocks of 63 bits.

Over time, the data might become corrupted with bits �ipping from 0 to 1 or vice versa. We assume

that there is at most one such corruption per block. Thus, the major questions here are:

• How much information can we store reliably on each block of data?

• How to detect corruptions and correct them?

• Develop e�cient algorithms to convert a message into an error-correctable form, called a

codeword, and convert a (possibly corrupted) codeword back to the original message.

Repetition. One simple solution is repetition: we repeat the data 3 times. In this scheme, we use

63 bits to store a 21 bit message. To decode each bit of the message, we simply take the majority

of the 3 repetitions. Why does this work? One explanation is that any two codewords di�er on at

least 3 bits. Therefore, after one corruption, there is at most one codeword within distance 1 from

the received word and all other codewords are at distance at least 2 from the received word.

Observe that this solution can protect against many multi-bit error patterns e.g. one error in

each block of 3 bits. However, it cannot protect against general two bit errors.

Checksum. To develop a more e�cient code, we start with the task of detecting error. Notice

that we can use a check sum to detect the error: that is, in addition to the message, we store 1

bit that is equal to the XOR of all bits in the message. Notice that the XOR of the bits of the

codeword is always 0. Thus, we can use the XOR of the bits on the received word to check if it is

corrupted or not.

Hamming code. In this scheme, we use 7 bits to store a 4 bit message b1, b2, b3, b4. The 3

additional bits store the checksums b1 ⊕ b2 ⊕ b4, b1 ⊕ b3 ⊕ b4, b2 ⊕ b3 ⊕ b4. In other words, for a

message x, the corresponding code word is xG, where the generator matrix G is
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


In order to show that this code can correct 1 mistake, it is su�cient to show that any two

codewords di�er in at least 3 coordinates.

1



Proof. Notice that any set of bits of a codeword along with their checksum satisfy the checksum

condition we mentioned earlier (the XOR of the bits and the checksum is 0). Thus, for any codeword

c, we have Hc = 0, where the parity check matrix H is1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


Notice that HGT = 0 i.e. the product of the generator matrix and the parity check matrix is a

matrix of zeroes.

Now we prove that any two codewords di�er in at least 3 coordinates by contradiction. Consider

two messages x 6= y and suppose that the corresponding codewords GTx and GT y di�er in at most 2

coordinates i.e. GT (x−y) is a binary vector with at most two non-zeroes. We have HGT (x−y) = 0
because HGT is the zero matrix. Notice that because GT (x−y) has at most 2 non-zeroes, the value

of HGT (x − y) is the sum of at most 2 columns of H. All columns of H are distinct so it is not

possible to add up two columns and get the zero vector. Thus, we have a contradiction.

1 Random error and information theory

We next consider coding theory from a di�erent point of view. In 1948, Shannon studied the

problem of transmitting messages over a noisy channel. The simplest channel is where each bit is

randomly �ipped with some probability p. This is called the binary symmetric channel BSCp. As

we saw earlier, it is possible to correct for errors with redundancy. Shannon suggest the use of two

algorithms for the coding process. First, we have an encoding algorithm E : {0, 1}k → {0, 1}n to

transform a k bit message into an n bit codeword. The codeword is sent through the noisy channel

and we receive a received word. Next, we have a decoding algorithm D : {0, 1}n → {0, 1}n to

transform an n bit received word back to a k bit message.

The key question is how much redundancy is needed for each value of p. Shannon introduces

the entropy function to answer this question.

H(p) = −p log p− (1− p) log(1− p)
Shannon shows that if k/n < 1 − H(p) − ε then there exist E and D, and a constant δ such

that Pr[D(BSCp(E(m))) 6= m] ≤ exp(−δn). On the contrary, if k/n > 1 − H(p) + ε then there

exists constant δ such that any E,D would fail with probability at least 1 − exp(−δn). Here the

probabilities are over the choice of m (uniformly random from {0, 1}k) and the noise of BSCp.

Let's try to see where the entropy function comes from in the above theorem. Suppose we

transmit a codeword x1, . . . , xn over the channel and receive x1 +y1, . . . , xn +yn, where yi = 0 with

probability 1−p and yi = 1 with probability p. How many �ips i.e. how many 1s in y do we expect?
By the Cherno� bound, the number of �ips concentrates around (1± ε)pn with probability at least

1 − exp(−Ω(ε2n)). Thus, a typical error pattern has around pn bit �ips and there are
(

n
pn≈2H(p)n

)
such patterns. In order to be able to decode, we need to make sure that for any codeword and any

common error pattern, the result is not confused with another combination of some codeword and

a common error pattern. Thus, we have to allocate 2H(p)n values to each codeword (one for each

error pattern) and thus, can have at most 2(1−H(p))n codewords.

2 Reed-Solomon codes

In this section, we consider the popular family of Reed-Solomon codes. These codes are used for

many applications including storing data on CDs. We leave the setting of bits and assume that

2



each symbol takes one of q di�erent values in the �nite �eld Zq (e.g. integers mod a prime q). We

can add and multiply these values just like normal integers and x · y = 0 if and only if either x = 0
or y = 0. A message of length k can be viewed as coe�cients of a degree k − 1 polynomial p(x).

p(x) = m0 +m1x+ · · ·+mk−1x
k−1

An important property of polynomials of degree k−1 is that any k evaluations uniquely determine

the polynomial.

Lemma 2.1. For any set of k pairs (x1, y1), . . . , (xk, yk) where xi are distinct values in Zq. There

is a unique degree k − 1 polynomial g such that g(xi) = yi ∀i.

Proof. Let m0, . . . ,mk−1 be the coe�cients of the polynomial. The constraints g(xi) = yi are linear
equations over these variables m0, . . . ,mk−1.

1 x11 · · · xk−11

1 x12 · · · xk−12

· · ·
1 x1k · · · xk−1k



m0

m1

· · ·
mk−1

 =


y1
y2
· · ·
yk


The left matrix is called the Vandermonde matrix. Its determinant is

∏
1≤i<j≤k(xj−xi) 6= 0 because

the xi are distinct. Thus, there is a unique solution for this system of linear equations.

The codeword is simply the evaluations of this polynomial at n points u1, . . . , un ∈ Zq :

p(u1), . . . , p(un).
Suppose the channel corrupts r of these points where r ≤ n−k. Suppose the received values are

v1, . . . , vn. If we know where the corruption happens then we can recover the message by applying

the above lemma to the evaluations that are not corrupted. Thus, the key issue is to �gure out

where the corruption happens. The following argument shows how to do so when r ≤ (n− k)/2.

Lemma 2.2. There exists a degree r polynomial e(x) and a polynomial c(x) of degree at most

r + k − 1 such that c(ui) = e(ui)vi

Proof. Let I be the set of indices that got corrupted. We choose e(x) =
∏

i∈I(x − ui) and c(x) =
e(x)p(x). Consider an index i ∈ I, we have e(ui) = 0 and thus c(ui) = e(ui)vi = 0. Consider an

index i 6∈ I, we have p(ui) = vi so c(ui) = e(ui)vi. Thus, condition in the lemma holds for all i.

The polynomial e(x) is called the error locator polynomial. If we let the coe�cients of c and e
be unknowns then we have a system of 2r + k unknowns and n ≥ 2r + k equations. This system

is overdetermined but the lemma guarantees that it is feasible. In fact, it is a system of linear

equations so we can solve using Gaussian elimination.

We can de�ne divisibility for polynomial: e(x) divides c(x) if there exists a polynomial p(x) such
that e(x)p(x) = c(x). This is an analog of divisibility for integers and one algorithm for dividing

polynomial is an analog of long division for integers.

Lemma 2.3. If n ≥ 2r+k then any solution c(x), e(x) satis�es 1) e(x) divides c(x) as polynomials

and 2) c(x)/e(x) is p(x).

Proof. Notice that c(x)−e(x)p(x) has roots at all the ui where the corresponding vi is not corrupted.
Thus, this polynomial of degree at most r + k − 1 has n− r roots. Thus, if n− r ≥ r + k then this

polynomial is identically 0.

Thus, we obtain an algorithm for decoding Reed-Solomon code. First, we solve the linear system

to �nd the coe�cients of c and e. Then we use the long division algorithm to compute c(x)/e(x),
which gives p(x).

3



3 Secret sharing

An interesting application of Reed-Solomon codes is to secret sharing due to Shamir. The model is

as follows. Suppose we have a secret a0 that we want to hide among n players. We would like to

have the following 2 properties: 1) every subset of k people can pool their knowledge and decode it

but 2) no subset of k−1 people can pool their knowledge and get any information about the secret.

Assume that a0 is a number in Zq. We pick random numbers a1, . . . , ak−1 in Zq and view

(a0, . . . , ak−1) as a message for Reed-Solomon code. Each player gets one symbol of the codeword

corresponding to this message i.e. player i gets the evaluation of the polynomial
∑

j ajx
j at ui.

Because any k evaluation of a degree k − 1 polynomial uniquely determine the polynomial, any k
people can pool their knowledge and solve for the secret. However, for every set of k − 1 people

i1, . . . , ik−1 and values y1, . . . , yk−1 and a choice for a0, there is a unique polynomial with the

constant term a0 and the evaluations matching their observations. Thus, from their point of view,

any choice of a0 is equally likely and thus they have no information about the correct value of a0.

4 Multiparty secure computation

Next we consider a vast generalization of secret sharing called multiparty secure computation, due

to Ben-Or, Goldwasser and Wigderson. Suppose each player i holds a secret si and the goal is to

compute a function f(s1, . . . , sn), where f is a publicly known function. However, no subset of k−1
players can pool together their information and infer some information about other players' input

beyond what they can compute from their inputs and the value f(s1, . . . , sn). For example, if the

function f just reveals s1 then we cannot keep s1 secret from other players.

We assume that for any two players, there is a secure channel between them that can not be

eavesdropped by other players. These channels can be constructed for example, by public key

cryptography.

For the purpose of this note, we will only focus on a simple example: computing the sum of the

secrets. We will also just focus on the case where all players are honest but curious: they try to

learn as much as they can about others' secret but they will follow the protocol.

Each player runs a version of Shamir's secret sharing protocol. Player i picks k − 1 random

numbers ai,1, . . . , ai,k−1 and evaluate the polynomial si + ai,1x+ · · ·+ ai,k−1x
k−1 at u1, . . . , un and

send the values to the respective players (the evaluation at ui is kept to himself). Let γi,j be the

value sent by player i to player j.
At the end, we would like to compute

∑
i si. Now each player j compute

∑
i γi,j i.e. sum of the

shares sent to him. That is, he just pretends that the shares are the actually input data and perform

the computation. A key observation is that this sum computed by player j is the evaluation at uj
of the polynomial ∑

i

(si + ai,1x+ · · ·+ ai,k−1x
k−1)

This is a random polynomial and the value we would like to compute is the free coe�cient of

this polynomial. Thus, the player has managed to perform a secret sharing protocol for the sum∑
i si.
We can also do a weighted sum of the secrets: the players compute the corresponding weighted

sum of their shares.

It follows that we can also compute the product with a matrix f(s1, . . . , sn) = Ms since it is

simply a sequence of weighted sums.

4



5 General computation

We would like to be able to compute securely any function, not just a simple sum. Just like boolean

programs, we can de�ne algebraic programs that capture all computation over a �nite �eld.

A straight-line program of size m with inputs x1, . . . , xn ∈ Zq is a sequence of m instructions of

the form

yi ← yi1 op yi2

where i1, i2 < i and op is either + or × and yi = xi for i = 1, 2, . . . , n.The output of the program is

ym.
These programs can compute any polynomial in Zq. Boolean straight line programs can perform

arbitrary computation. A T step computation on a Turing machine can be simulated using a straight

line program with O(T log T ) steps.
The �rst n steps are easy, the players simply exchange shares. Consider the n + 1 step. If it

is a summation, we already saw how to compute a sum: each player computes the sum on their

shares. Thus, the only operation left is to compute a product yi ← yi1 × yi2 . Suppose that these

two previous variables are secretly shared using polynomials g and h where the value being secretly

shared are the coe�cients g0 and h0. The obvious way to secretly share the product is to use

the product polynomial π(x) = g(x)h(x) =
∑2k−2

r=0 xr
∑r

i=0 gihr−i. The free coe�cient π0 = g0h0
is exactly the desired product. Since everyone has evaluation of g and h, they can compute the

evaluation of π by multiplying their evaluations.

However, there are a few issues. One problem is that this polynomial has degree 2k − 2 as

opposed to k− 1. The more serious problem is that the coe�cients are not random elements of Zq.

To make the coe�cients random again, each player i picks a random degree 2k − 2 polynomial

ri with 0 as the free coe�cient. He then secretly shares this polynomial with other players. Now

the player can compute their secret shares for the polynomial

π(x) +
n∑

i=1

ri(x)

Notice that the free coe�cient of this polynomial is still g0h0 and the other coe�cients are uniformly

random.

To truncate the degree of π at k − 1, we can de�ne a truncated polynomial π′(x) =
∑k−1

i=0 πix
i.

It turns out that one can compute the evaluations of π′ as the product of the evaluations of π and

a �xed constant matrix. Details can be found in the original paper.

5


