CS 4800: Algorithms & Data

Lecture 6 January 26, 2018

Randomized algorithms

Events and probabilities

Suppose you're on a game show, and you're given the choice of three doors (A, B, C). Behind one door is a car, behind the others, goats. You pick a door, say A, and the host, who knows what's behind the doors, opens another door, say C, which has a goat. He says to you, "Do you want to pick door B?" Is it to your advantage to switch your choice of doors?

Assumptions

- Car is equally likely to be behind each door
- Player is equally likely to pick each door
- After player picks, host opens a different door with a goat behind
- If the host has choices, he is equally likely to pick each of them

Sample space

- Randomly determined quantities:
 - Car location
 - Door chosen by player
 - Door opened by host
- Every possible combination is an outcome
- Set of all outcomes is sample space

Prob. of (A,A,B) = 1/18 Prob. of (A,A,C) = 1/18 Prob. of (A,B,C) = 1/9

Random variables

- Random variable R is a function R: $\{sample \ space\} \rightarrow \mathbb{R}$
- Outcomes of 2 fair coin tosses
- R=#heads in the outcome
- R(HH) = 2
- R(HT) = 1
- $Pr[R = 1] = Pr[HT] + Pr[TH] = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Expectation

- R is random variable on sample space S
- $E[R] = \sum_{outcome w} R(w) \Pr[w]$
- R: #heads in 2 fair coin tosses
- $E[R] = R(TT) \Pr[TT] + R(TH) \Pr[TH] + R(HT) \Pr[HT] + R(HH) \Pr[HH]$
- $E[R] = 0 + \frac{1}{4} + \frac{1}{4} + \frac{2}{4} = 1$

Linearity of expectation Claim. For any variables R_1 , R_2 , $E[R_1 + R_2] = E[R_1] + E[R_2]$ Proof. Let $R = R_1 + R_2$. $E[R] = \overline{\sum_{outcome \ w \in S} R(w) \Pr[w]}$ $=\sum_{outcome \ w \in S} (R_1(w) + R_2(w)) \Pr[w]$ $=\sum_{w\in S} R_1(w) \Pr[w] + \sum_{w\in S} R_2(w) \Pr[w]$ $= E[R_1] + E[R_2]$

Application

- R: #heads in 2 fair coin tosses
- $R = R_1 + R_2$ where R_1 =#heads in 1st coin toss
- E[R₁]=1/2 (head with probability ½, tail with probability ½)
- E[R₂]=1/2
- $E[R] = \frac{1}{2} + \frac{1}{2} = 1$
- E[#heads in 100 coin tosses] = ?
- 100 coin tosses. E[#times where two consecutive coins are different] = ?

Quicksort

- Pick an element p
- Partition the list using p as pivot
 - Left half are elements < p
 - Right half are elements > p
- Recursively sort both halves

How to pick good pivot p?

Picking good pivot

- Can run median algorithm to use median as pivot
- O(n) time to find pivot
- T(n) = 2T(n/2) + O(n)
- Solution?
- Cons: Constant in O(n) is large
- New idea: use random pivot

Running time with random pivot

- Suffices to count number of comparisons
- V_i: ith smallest value in array A[1...n]
- X_{ij} : random variable that is 1 if we compare V_i and V_j and 0 otherwise
- #*comparisons* = $\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$
- $E[\# comparisons] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}]$

When do we compare V_i and V_j ?

- If V_k is picked as pivot and $V_i < V_k < V_j$
 - V_i goes left, V_j goes right
 - We do not compare V_i and V_j
- In general, we compare V_i and V_j if and only if the first pivot chosen from {V_i, V_{i+1},..., V_j} is either V_i or V_j.
- By symmetry, the probability of this is $\frac{2}{i-i+1}$

•
$$E[X_{ij}] = \frac{2}{j-i+1}$$

Running time of Quicksort

• $E[\# comparisons] = \sum_{i=1}^{n-1} \overline{\sum_{j=i+1}^{n} E[X_{ij}]}$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{k=1}^{n-1} \sum_{i=1}^{n-k} \frac{2}{k+1} \quad (reorder \ sums, j = i+k)$$

$$= \sum_{k=1}^{n-1} \frac{2(n-k)}{k+1}$$

$$= \sum_{k=1}^{n-1} \left(\frac{2n+2}{k+1} - 2\right)$$

$$= (2n+2) \sum_{k=1}^{n-1} \frac{1}{k+1} - 2(n-1)$$
Harmonic number < ln(n)