CS 4800: Algorithms \& Data

Lecture 6
January 26, 2018

Randomized algorithms

Events and probabilities

Suppose you're on a game show, and you're given the choice of three doors (A, B, C). Behind one door is a car, behind the others, goats. You pick a door, say A, and the host, who knows what's behind the doors, opens another door, say C, which has a goat. He says to you, "Do you want to pick door B?" Is it to your advantage to switch your choice of doors?

Assumptions

- Car is equally likely to be behind each door
- Player is equally likely to pick each door
- After player picks, host opens a different door with a goat behind
- If the host has choices, he is equally likely to pick each of them

Sample space

- Randomly determined quantities:
- Car location
- Door chosen by player
- Door opened by host
- Every possible combination is an outcome
- Set of all outcomes is sample space

Player's	Door
$1^{\text {st }}$ guess	revealed

B
 B C
A
B
A
C
A
B
A

B	A
C	A

B

Car location	Player's $1{ }^{\text {st }}$ guess	Door revealed	Switching wins
		1/2 B	Prob. of $(A, A, B)=1 / 18$
	A	1/2 C	Prob. of $(A, A, C)=1 / 18$
	1/3		of $(A, A, C)=1 / 18$
	1/3 B	1 C	$\checkmark \quad$ Prob. of $(A, B, C)=1 / 9$
	$1 / 3 \mathrm{C}$		
A		B	\checkmark
		C	\checkmark
1/3	A		
$1 / 3 \mathrm{~B}$		A	
1/3	B	C	
1/3	C		
C		A	\checkmark
		B	
	A		\checkmark
	B	A	
	C	A	
		B	

Random variables

- Random variable R is a function $R:\{$ sample space $\} \rightarrow \mathbb{R}$
- Outcomes of 2 fair coin tosses
- $\mathrm{R}=\#$ \#heads in the outcome
- $\mathrm{R}(\mathrm{HH})=2$
- $\mathrm{R}(\mathrm{HT})=1$
- $\operatorname{Pr}[R=1]=\operatorname{Pr}[H T]+\operatorname{Pr}[T H]=1 / 4+1 / 4=1 / 2$

Expectation

- R is random variable on sample space S
- $E[R]=\sum_{\text {outcome } w} R(w) \operatorname{Pr}[w]$
- R: \#heads in 2 fair coin tosses
- $E[R]=R(T T) \operatorname{Pr}[T T]+R(T H) \operatorname{Pr}[T H]+$ $R(H T) \operatorname{Pr}[H T]+R(H H) \operatorname{Pr}[H H]$
- $E[R]=0+\frac{1}{4}+\frac{1}{4}+\frac{2}{4}=1$

Linearity of expectation

Claim. For any variables R_{1}, R_{2},

$$
E\left[R_{1}+R_{2}\right]=E\left[R_{1}\right]+E\left[R_{2}\right]
$$

Proof. Let $R=R_{1}+R_{2}$.

$$
\begin{aligned}
E[R] & =\sum_{\text {outcome } w \in S} R(w) \operatorname{Pr}[w] \\
& =\sum_{\text {outcome } w \in S}\left(R_{1}(w)+R_{2}(w)\right) \operatorname{Pr}[w] \\
& =\sum_{w \in S} R_{1}(w) \operatorname{Pr}[w]+\sum_{w \in S} R_{2}(w) \operatorname{Pr}[w] \\
& =E\left[R_{1}\right]+E\left[R_{2}\right]
\end{aligned}
$$

Application

- R: \#heads in 2 fair coin tosses
- $R=R_{1}+R_{2}$ where $\mathrm{R}_{1}=\#$ heads in $1^{\text {st }}$ coin toss
- $E\left[R_{1}\right]=1 / 2$ (head with probability $1 / 2$, tail with probability $1 / 2$)
- $E\left[R_{2}\right]=1 / 2$
- $E[R]=1 / 2+1 / 2=1$
- E [\#heads in 100 coin tosses] = ?
- 100 coin tosses. E[\#times where two consecutive coins are different] = ?

Quicksort

 00000000000000000000

- Pick an element p
- Partition the list using p as pivot
- Left half are elements < p
- Right half are elements >p
- Recursively sort both halves

How to pick good pivot p?

Picking good pivot

- Can run median algorithm to use median as pivot
- O(n) time to find pivot
- $T(n)=2 T(n / 2)+O(n)$
- Solution?
- Cons: Constant in O(n) is large
- New idea: use random pivot

Running time with random pivot

- Suffices to count number of comparisons
- V_{i} : ith smallest value in array A[1...n]
- $X_{i j}$: random variable that is 1 if we compare V_{i} and V_{j} and 0 otherwise
- \#comparisons $=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}$
- $E[\#$ comparisons $]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$

When do we compare V_{i} and V_{j} ?

- If V_{k} is picked as pivot and $V_{i}<V_{k}<V_{j}$
- V_{i} goes left, V_{j} goes right
- We do not compare V_{i} and V_{j}
- In general, we compare V_{i} and V_{j} if and only if the first pivot chosen from $\left\{V_{i}, V_{i+1}, \ldots, V_{j}\right\}$ is either V_{i} or V_{j}.
- By symmetry, the probability of this is $\frac{2}{j-i+1}$
- $E\left[X_{i j}\right]=\frac{2}{j-i+1}$

Running time of Quicksort

- $E[\#$ comparisons $]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$

$$
\begin{gathered}
=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
=\sum_{k=1}^{n-1} \sum_{i=1}^{n-k} \frac{2}{k+1}(\text { reorder sums }, j=i+k) \\
=\sum_{k=1}^{n-1} \frac{2(n-k)}{k+1} \\
=\sum_{k=1}^{n-1}\left(\frac{2 n+2}{k+1}-2\right) \\
=(2 n+2) \sum_{k=1}^{n-1} \frac{1}{k+1}-2(n-1) \\
\text { Harmonic number }<\ln (n)
\end{gathered}
$$

