CS 4800: Algorithms \& Data

Lecture 24
April 17, 2018

String matching

- Given a text T and a pattern P
- Find in the text T all occurrences of P

1	5	7	9	4	8	5	2

Streaming characters

- $1579 \rightarrow 5794$
- Delete first digit a, multiply by 10, add last digit b
- $N^{\prime}=10\left(N-10^{|P|-1} a\right)+b$
- Slide window from left to right, in every step
- Form N^{\prime} from current N
- Compare N^{\prime} with pattern P
- Time: O(T)
- N might be too large to fit in an int

1	5	7	9	4	8	5	2

Rabin-Karp/rolling hash

- Pick a prime p
- $\mathrm{h}(\mathrm{N})=\mathrm{N} \bmod \mathrm{p}$
- Instead of keeping track of N , only keep $\mathrm{h}(\mathrm{N})$

1	5	7	9	4	8	5	2

$$
\begin{aligned}
h\left(N^{\prime}\right) & =\left(10\left(N-10^{|P|-1} a\right)+b\right) \bmod p \\
& =\left(10\left((N \bmod p)-\left(10^{|P|-1} \bmod p\right) a\right)+b\right) \bmod p
\end{aligned}
$$

Fixed prime p doesn't work

- $p=131$
- Pattern 1448 matches "1579"

1	5	7	9	4	8	5	2

Use random prime!

Use random prime

- $\pi(n)$: \#primes smaller than or equal to n
- Fact: $\pi(n) \geq \frac{7}{8} \cdot \frac{n}{\ln n}$
- Consider at any location where the text does not match the pattern
- We compare 2 numbers smaller than $10^{|P|}$
- Their difference is smaller than $10^{|P|}$
- What is the probability random prime p divides the difference $<10^{|P|}$?

Collision probability

- At most $\log \left(10^{|P|}\right)$ different primes divide the difference
- If we try a random prime p up to z then the probability of collision is at most $\frac{\log \left(10^{|P|}\right)}{\pi(z)}$
- The probability we make error anywhere is at most $\frac{|T| \cdot \log \left(10^{|P|}\right)}{\pi(z)}$
- Exercise: how large is z to make failure prob. < 1/100?
- Can also pick k primes (with replacement)
- Exercise: what is failure prob. with k primes?

How to find random prime?

- Pick random number p in $\{2,3, \ldots, z\}$
- Check if p is a prime
- $\pi(z) \geq \frac{7}{8} \cdot \frac{z}{\ln z}$
- Probability p is prime is at least $\frac{7}{8 \ln z}$
- Exercise: what is expected number of trials before we find a prime?

Hashing for large scale data processing

Document similarity

- Collection of documents (e.g. web crawl)
- Want to identify near duplicates
- How to identify exact duplicates?
- Hashing
- Near duplicates could have very different hash values

Set similarity

- Two sets A and B of 64 bit numbers
- $\operatorname{sim}(A, B)=\frac{|A \cap B|}{|A \cup B|}$
- $\{1,3,5\},\{3,7\}$
- $\operatorname{sim}(A, B)=1 / 4$

Compute set similarity

- $\operatorname{sim}(A, B)=\frac{|A \cap B|}{|A \cup B|}$
- Midterm 1:
- Sort elements in A \& B e.g. $\{1,3,5\}$ and $\{3,4,5\}$ give - 1,3,3,4,5,5
- \# of pairs of consecutive elements that are equal
- $|A \cap B|$
- $|A \cup B|=|A|+|B|-|A \cap B|$
- Time: O(n $\log \mathrm{n})$

Fast approximation

- Random permutation π of 64 bit numbers
- Random shuffling of all 64 bit numbers
- $10,7,4,5, \ldots$
- $\pi(4)=$ position of 4 in the permutation
- Set S of numbers
- $\pi(S)$: position of numbers in S in the permutation
- When does $\min (\pi(A))=\min (\pi(B))$?

Fast approximation

- When does $\min (\pi(A))=\min (\pi(B))$?
- When there exists x such that

$$
\pi(x)=\min (\pi(A))=\min (\pi(B))
$$

- $x \in A \cap B$ and after shuffling, it is the first among all numbers in $A \cup B$
- After random shuffling, all numbers have equal chance of being first
- $\{1,3,5\}$ and $\{3,7\}$,

$$
\operatorname{Pr}[\min (\pi(\{1,3,5\}))=\min (\pi(\{3,7\}))]=?
$$

- $\operatorname{Pr}[\min (\pi(A))=\min (\pi(B))]=\frac{|A \cap B|}{|A \cup B|}$

Fast approximation

- Instead of 1, use 100 random permutations
- For each set A , compute $\min \left(\pi_{i}(A)\right)$ for $\mathrm{i}=1, \ldots, 100$
- To estimate $\operatorname{sim}(A, B)$
- Compare the min for each permutation
- Count the number of times the minima agree
- Divide by 100

Document similarity to set similarity

- Hash every 4 consecutive words ("shingle") into a 64 bit number
- Each document D gives a set S_{D} of numbers
- Similarity of 2 documents A and B reduces to similarity of 2 sets S_{A} and S_{B}

Computation with limited storage

- Input data too large to fit in memory
- Compute information without storing whole input!
- Input arrives in a stream $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$
- Process one record at a time

Estimating distinct elements

- A stream of objects
- Goal: estimate the number of distinct objects
- Example: 12332113
- Applications
- Router estimating number of communicating machines
- Estimating number of distinct queries in query log

Hashing solution

- U: universe of all objects
- Hash function $h: U \rightarrow[0,1]$
- Algorithm
- Apply h to every object x in the stream
- Store the minimum value $h(x)$ over all x seen so far
- Let y be the minimum hash value $h(x)$ over all x in stream
- Observation:
- y only depends on the collection of distinct values
- Duplicate x's do not affect y

Analyzing y

- k : the number of distinct values in stream
- $E[y]=\frac{1}{k+1}$
- Thus, can estimate the number of distinct values by 1/y-1
- Can improve accuracy by having many hash functions and taking the average/median

