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String matching
• Given a text T and a pattern P

• Find in the text T all occurrences of P

1 5 7 9 4 8 5 2



Streaming characters
• 1579 → 5794

• Delete first digit a, multiply by 10, add last digit b

• 𝑁′ = 10 𝑁 − 10 𝑃 −1𝑎 + 𝑏

• Slide window from left to right, in every step
• Form N’ from current N

• Compare N’ with pattern P

• Time: O(T)

• N might be too large to fit in an int

1 5 7 9 4 8 5 2



Rabin-Karp/rolling hash

• Pick a prime p

• h(N) = N mod p

• Instead of keeping track of N, only keep h(N)

ℎ 𝑁’ = 10 𝑁 − 10 𝑃 −1𝑎 + 𝑏 𝑚𝑜𝑑 𝑝

1 5 7 9 4 8 5 2

= 10 𝑁 𝑚𝑜𝑑 𝑝 − 10 𝑃 −1 𝑚𝑜𝑑 𝑝 𝑎 + 𝑏 𝑚𝑜𝑑 𝑝



Fixed prime p doesn’t work

• p = 131

• Pattern 1448 matches “1579”

1 5 7 9 4 8 5 2

Use random prime!



Use random prime

• 𝜋 𝑛 : #primes smaller than or equal to n

• Fact: 𝜋 𝑛 ≥
7

8
∙

𝑛

ln 𝑛

• Consider at any location where the text does not 
match the pattern

• We compare 2 numbers smaller than 10 𝑃

• Their difference is smaller than 10 𝑃

• What is the probability random prime p divides the 
difference < 10 𝑃 ?



Collision probability

• At most log(10 𝑃 ) different primes divide the 
difference

• If we try a random prime p up to z then the 

probability of collision is at most 
log 10 𝑃

𝜋(𝑧)

• The probability we make error anywhere is at most 
|T|∙log 10 𝑃

𝜋(𝑧)

• Exercise: how large is z to make failure prob. < 1/100?

• Can also pick k primes (with replacement)

• Exercise: what is failure prob. with k primes? 



How to find random prime?

• Pick random number p in {2,3,…,z}

• Check if p is a prime

• 𝜋 𝑧 ≥
7

8
∙

𝑧

ln 𝑧

• Probability p is prime is at least 
7

8 ln 𝑧

• Exercise: what is expected number of trials before 
we find a prime?



Hashing for large scale 
data processing



Document similarity

• Collection of documents (e.g. web crawl)

• Want to identify near duplicates

• How to identify exact duplicates?
• Hashing

• Near duplicates could have very different hash 
values



Set similarity

• Two sets A and B of 64 bit numbers

• 𝑠𝑖𝑚 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

• {1,3,5}, {3,7}
• 𝑠𝑖𝑚(𝐴, 𝐵) = 1/4



Compute set similarity

• 𝑠𝑖𝑚 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

• Midterm 1:

• Sort elements in A & B e.g. {1,3,5} and {3,4,5} give
• 1,3,3,4,5,5

• # of pairs of consecutive elements that are equal
• 𝐴 ∩ 𝐵

• 𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵

• Time: O(n log n)



Fast approximation

• Random permutation 𝜋 of 64 bit numbers 
• Random shuffling of all 64 bit numbers

• 10, 7, 4, 5, …

• 𝜋 4 = position of 4 in the permutation

• Set S of numbers

• 𝜋 𝑆 : position of numbers in S in the permutation

• When does min 𝜋 𝐴 = min(𝜋 𝐵 )?



Fast approximation

• When does min 𝜋 𝐴 = min(𝜋 𝐵 )?

• When there exists x such that 
𝜋 𝑥 = min 𝜋 𝐴 = min(𝜋 𝐵 )

• 𝑥 ∈ 𝐴 ∩ 𝐵 and after shuffling, it is the first among all 
numbers in 𝐴 ∪ 𝐵

• After random shuffling, all numbers have equal chance 
of being first

• {1, 3, 5} and {3, 7},
Pr min 𝜋 {1,3,5} = min 𝜋 {3,7} = ?

• Pr min 𝜋 𝐴 = min 𝜋 𝐵 =
𝐴∩𝐵

𝐴∪𝐵



Fast approximation

• Instead of 1, use 100 random permutations

• For each set A, compute min(𝜋𝑖(𝐴)) for i=1,…,100

• To estimate sim(A,B) 
• Compare the min for each permutation

• Count the number of times the minima agree

• Divide by 100



Document similarity to set similarity

• Hash every 4 consecutive words (“shingle”) into a 
64 bit number

• Each document D gives a set SD of numbers

• Similarity of 2 documents A and B reduces to 
similarity of 2 sets SA and SB



Computation with limited storage

• Input data too large to fit in memory

• Compute information without storing whole input!

• Input arrives in a stream x1, x2,…

• Process one record at a time

x7 x6 x5 x4 x3 x2 x1



Estimating distinct elements

• A stream of objects

• Goal: estimate the number of distinct objects

• Example: 1 2 3 3 2 1 1 3 

• Applications
• Router estimating number of communicating machines

• Estimating number of distinct queries in query log



Hashing solution

• 𝑈: universe of all objects

• Hash function ℎ ∶ 𝑈 → [0,1]

• Algorithm

• Apply h to every object x in the stream

• Store the minimum value h(x) over all x seen so far

• Let y be the minimum hash value h(x) over all x in stream

• Observation:

• y only depends on the collection of distinct values

• Duplicate x’s do not affect y



Analyzing y

• k : the number of distinct values in stream 

• 𝐸 𝑦 =
1

𝑘+1

• Thus, can estimate the number of distinct values by 
1/y-1

• Can improve accuracy by having many hash 
functions and taking the average/median


