
CS 4800: Algorithms &
Data

Lecture 23

April 13, 2018

Hashing

Birthday paradox

• Pr[2nd person has different birthday from 1st person]

• 1 −
1

365

• Pr[3rd person has different birthday from first two people,
provided that first two people have different birthdays]

• 1 −
2

365

• Probability first k people have different birthdays is
product of these terms

• 1 −
1

365
1 −

2

365
… 1 −

𝑘−1

365

Birthday paradox

• Probability first k people have different birthdays is
product of these terms

• 1 −
1

365
1 −

2

365
… 1 −

𝑘−1

365

• How large does k need to be for prob. < ½ ?
• 23

Balls into bins

• n random birthdays among 365 choices

• n balls are thrown into m bins

• What is the distribution of the loads?

• Birthday paradox: what is minimum n so that the
probability some bin has at least 2 balls is > ½?

Balls into bins

• n balls are thrown into m bins

• Expected number of empty bins?

• What is probability first bin is empty?

• Ball 1 misses bin 1 with probability 1 − 1/𝑚

• Probably n balls all miss bin 1 is 1 −
1

𝑚

𝑛

• ≈ 𝑒−𝑛/𝑚

Hashing

• Assign a number to an object via a hash function
ℎ: 𝑆 → {0, 1, 2, … ,𝑚 − 1}

• Make comparison easy

• Object u = object v only if ℎ(𝑢) = ℎ(𝑣)

• Downside: ℎ(𝑢) = ℎ(𝑣) for some 𝑢 ≠ 𝑣 (collision)

• Idea: pick h randomly so that for any 𝑢 ≠ 𝑣, the
chance ℎ(𝑢) = ℎ(𝑣) is low

• Idealized: for all u and i, Pr ℎ 𝑢 = 𝑖 =
1

𝑚

Question

• Hash n objects to numbers in {0, 1, 2, … ,𝑚 − 1}

• How large should m be so that we expect less than
1 collision?

Password checker

• User picks a password

• Want to check if password is a common word

• Dictionary of n common words

Checker using hash function

• Use an array of m bits

• All bits are initialized to 0

• Hash every word w in dictionary
• If hash(w)=i then set bit i of array to 1

• On query:
• j=hash(password)

• If bit j is 1, reject password

Checker using hash function

• On query:
• j=hash(password)

• If bit j is 1, reject password

• If password is common word, Pr[reject] = 1

• If password is not common,
• Pr 𝑎𝑐𝑐𝑒𝑝𝑡 = Pr ℎ𝑎𝑠ℎ 𝑤 ≠ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑚𝑚𝑜𝑛 𝑤

= Pr 𝑏𝑖𝑛 𝑗 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 𝑎𝑓𝑡𝑒𝑟 𝑛 𝑡ℎ𝑟𝑜𝑤𝑠

= (1 − 1/𝑚)𝑛≈ exp(−𝑛/𝑚)

Checker using hash function

• If password is not common,

• Pr 𝑎𝑐𝑐𝑒𝑝𝑡 = exp −
𝑛

𝑚

• Example, n=100000 common words

• m=1000000 bits

• Pr 𝑎𝑐𝑐𝑒𝑝𝑡 = 90%

Bloom filter
• t hash functions ℎ1, ℎ2, … , ℎ𝑡

• t bit arrays of size m/t each

• All bits initialized to 0

• Hash every word w in dictionary

• If ℎ3 𝑤 = 𝑖 then set bit i in array 3 to 1

• Same for other tables

• On query q:

• 𝑗1 = ℎ1 𝑞 , 𝑗2 = ℎ2 𝑞 ,…

• If bit 𝑗1 of array 1 is 0, accept password

• If bit 𝑗2 of array 2 is 0, accept password

• …

• If all those bits are 1, reject password

Bloom filter
• On query q:

• 𝑗1 = ℎ1 𝑞 , 𝑗2 = ℎ2 𝑞 ,…

• If bit 𝑗1 of array 1 is 0, accept password

• If bit 𝑗2 of array 2 is 0, accept password

• …

• If all those bits are 1, reject password

• If password is common word, Pr[reject] = 1

• If password is not common,

• Pr 𝑟𝑒𝑗𝑒𝑐𝑡 = Pr 𝑎𝑙𝑙 𝑎𝑟𝑟𝑎𝑦𝑠 𝑓𝑎𝑖𝑙

= (Pr 𝑎𝑟𝑟𝑎𝑦 1 𝑓𝑎𝑖𝑙𝑠)𝑡

= (1 − (1 − 𝑡/𝑚)𝑛)𝑡

Bloom filter
• If password is not common,

• Pr 𝑟𝑒𝑗𝑒𝑐𝑡 == (1 − (1 − 𝑡/𝑚)𝑛)𝑡

• Example, n=100000 common words

• m=500000 bits

• t=5 tables

• Pr 𝑎𝑐𝑐𝑒𝑝𝑡 = 90%

• m=1000000 bits
• t=1
• Pr 𝑎𝑐𝑐𝑒𝑝𝑡 = 90%

String matching
• Given a text T and a pattern P

• Find in the text T all occurrences of P

• Idea: view each character as a digit

• T is a long sequence of digits

• P is a |P|-digit number

• Each |P| consecutive characters in T form a |P|-
digit number

• Want to compare these numbers against P

1 5 7 9 4 8 5 2

Streaming characters
• Maintain the number formed by latest |P|

characters of the text

• Slide the window one character at a time

• Need to update original number N to form new N’

1 5 7 9 4 8 5 2

Streaming characters
• 1579 → 5794

• Delete first digit a, multiply by 10, add last digit b

• 𝑁′ = 10 𝑁 − 10 𝑃 −1𝑎 + 𝑏

• Slide window from left to right, in every step
• Form N’ from current N

• Compare N’ with pattern P

• Time: O(T)

• N might be too large to fit in an int

1 5 7 9 4 8 5 2

Rabin-Karp/rolling hash

• Pick a prime p

• h(N) = N mod p

• Instead of keeping track of N, only keep h(N)

ℎ 𝑁’ = 10 𝑁 − 10 𝑃 −1𝑎 + 𝑏 𝑚𝑜𝑑 𝑝

1 5 7 9 4 8 5 2

= 10 𝑁 𝑚𝑜𝑑 𝑝 − 10 𝑃 −1 𝑚𝑜𝑑 𝑝 𝑎 + 𝑏 𝑚𝑜𝑑 𝑝

