CS 4800: Algorithms \& Data

Lecture 23
April 13, 2018

Hashing

Birthday paradox

- $\operatorname{Pr}\left[2^{\text {nd }}\right.$ person has different birthday from $1^{\text {st }}$ person]
- $1-\frac{1}{365}$
- $\operatorname{Pr}\left[3^{\text {rd }}\right.$ person has different birthday from first two people, provided that first two people have different birthdays]
- $1-\frac{2}{365}$
- Probability first k people have different birthdays is product of these terms
- $\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{k-1}{365}\right)$

Birthday paradox

- Probability first k people have different birthdays is product of these terms
- $\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{k-1}{365}\right)$
- How large does k need to be for prob. < $1 / 2$?
- 23

Balls into bins

- n random birthdays among 365 choices
- n balls are thrown into m bins
- What is the distribution of the loads?
- Birthday paradox: what is minimum n so that the probability some bin has at least 2 balls is > $1 / 2$?

Balls into bins

- n balls are thrown into m bins
- Expected number of empty bins?
- What is probability first bin is empty?
- Ball 1 misses bin 1 with probability $1-1 / m$
- Probably n balls all miss bin 1 is $\left(1-\frac{1}{m}\right)^{n}$
- $\approx e^{-n / m}$

Hashing

- Assign a number to an object via a hash function

$$
h: S \rightarrow\{0,1,2, \ldots, m-1\}
$$

- Make comparison easy
- Object $u=$ object v only if $h(u)=h(v)$
- Downside: $h(u)=h(v)$ for some $u \neq v$ (collision)
- Idea: pick h randomly so that for any $u \neq v$, the chance $h(u)=h(v)$ is low
- Idealized: for all u and $\mathrm{i}, \operatorname{Pr}[h(u)=i]=\frac{1}{m}$

Question

- Hash n objects to numbers in $\{0,1,2, \ldots, m-1\}$
- How large should m be so that we expect less than 1 collision?

Password checker

- User picks a password
- Want to check if password is a common word
- Dictionary of n common words

Checker using hash function

- Use an array of m bits
- All bits are initialized to 0
- Hash every word w in dictionary
- If hash(w)=i then set bit i of array to 1
- On query:
- j=hash(password)
- If bit j is 1, reject password

Checker using hash function

- On query:
- j=hash(password)
- If bit jis 1, reject password
- If password is common word, $\operatorname{Pr[reject]~=~} 1$
- If password is not common,
- $\operatorname{Pr}[$ accept $]=\operatorname{Pr}[h a s h(w) \neq j$ for all common $w]$

$$
\begin{aligned}
& =\operatorname{Pr}[\text { bin } j \text { is empty after } n \text { throws }] \\
& =(1-1 / m)^{n} \approx \exp (-n / m)
\end{aligned}
$$

Checker using hash function

- If password is not common,
- $\operatorname{Pr}[$ accept $]=\exp \left(-\frac{n}{m}\right)$
- Example, n=100000 common words
- m=1000000 bits
- $\operatorname{Pr}[a c c e p t]=90 \%$

Bloom filter

- t hash functions $h_{1}, h_{2}, \ldots, h_{t}$
- t bit arrays of size m / t each
- All bits initialized to 0
- Hash every word w in dictionary
- If $h_{3}(w)=i$ then set bit i in array 3 to 1
- Same for other tables
- On query q :
- $j_{1}=h_{1}(q), j_{2}=h_{2}(q), \ldots$
- If bit j_{1} of array 1 is 0 , accept password
- If bit j_{2} of array 2 is 0 , accept password
- If all those bits are 1, reject password

Bloom filter

- On query q :
- $j_{1}=h_{1}(q), j_{2}=h_{2}(q), \ldots$
- If bit j_{1} of array 1 is 0 , accept password
- If bit j_{2} of array 2 is 0 , accept password
- ...
- If all those bits are 1, reject password
- If password is common word, $\operatorname{Pr}[r e j e c t]=1$
- If password is not common,
- $\operatorname{Pr}[$ reject $]=\operatorname{Pr}[$ all arrays fail $]$

$$
\begin{aligned}
& =(\operatorname{Pr}[\operatorname{array} 1 \text { fails }])^{t} \\
& =\left(1-(1-t / m)^{n}\right)^{t}
\end{aligned}
$$

Bloom filter

- If password is not common,
- $\operatorname{Pr}[$ reject $]=\left(1-(1-t / m)^{n}\right)^{t}$
- Example, $\mathrm{n}=100000$ common words
- $m=500000$ bits
- $\mathrm{t}=5$ tables
- $\operatorname{Pr}[$ accept $]=90 \%$
- $m=1000000$ bits
- $t=1$
- $\operatorname{Pr}[$ accept $]=90 \%$

String matching

- Given a text T and a pattern P
- Find in the text T all occurrences of P
- Idea: view each character as a digit
- T is a long sequence of digits
- P is a |P|-digit number
- Each |P| consecutive characters in T form a |P|digit number
- Want to compare these numbers against P

1	5	7	9	4	8	5	2

Streaming characters

- Maintain the number formed by latest |P| characters of the text

- Slide the window one character at a time
- Need to update original number N to form new N^{\prime}

Streaming characters

- $1579 \rightarrow 5794$
- Delete first digit a, multiply by 10, add last digit b
- $N^{\prime}=10\left(N-10^{|P|-1} a\right)+b$
- Slide window from left to right, in every step
- Form N^{\prime} from current N
- Compare N^{\prime} with pattern P
- Time: O(T)
- N might be too large to fit in an int

1	5	7	9	4	8	5	2

Rabin-Karp/rolling hash

- Pick a prime p
- $\mathrm{h}(\mathrm{N})=\mathrm{N} \bmod \mathrm{p}$
- Instead of keeping track of N , only keep $\mathrm{h}(\mathrm{N})$

1	5	7	9	4	8	5	2

$$
\begin{aligned}
h\left(N^{\prime}\right) & =\left(10\left(N-10^{|P|-1} a\right)+b\right) \bmod p \\
& =\left(10\left((N \bmod p)-\left(10^{|P|-1} \bmod p\right) a\right)+b\right) \bmod p
\end{aligned}
$$

