CS 4800: Algorithms \& Data

Lecture 21
April 6, 2018

Bipartite matching

Bipartite matching

Bipartite matching

- Given graph $G=(L \cup R, E)$ where the edges are between L and R
- Find the largest subset $M \subseteq E$ such that each vertex is incident to at most one edge in M

Reduction to max flow

All edges have capacity 1
Find max flow and return all middle edges e with $f(e)=1$

Correctness

Claim. If there is a matching of size k, then there is a flow of value k .
Proof. Let M be a matching of size k . Construct a flow f as follows.
If $(x, y) \in M$ set $\mathrm{f}(\mathrm{s}, \mathrm{x})=\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{y}, \mathrm{t})=1$.
Clearly f satisfies

- Capacity constraints
- Flow conservation
$|f|=|M|$.

Correctness

Claim. If max flow $=k$ then algorithm finds matching of size k .

Proof. All capacities are integers so Ford-Fulkerson algorithm finds integral flow.

$$
M=\{(x, y) \text { s.t. } x \in L, y \in R \text { and } f(x, y)=1\}
$$

Capacities are 1 so all edges have flow $=0$ or 1 . $\mathrm{c}(\mathrm{s}, \mathrm{x})=1$ so each $x \in L$ is incident to at most one edge in M . $c(y, t)=1$ so each $y \in R$ is incident to at most one edge in M. Thus M is a matching.
$|\mathrm{f}|=\mathrm{k}$ so there are exactly k vertices $x \in L$ with $\mathrm{f}(\mathrm{s}, \mathrm{x})=1$.
Each such x is incident to one edge in M and thus $|\mathrm{M}|=\mathrm{k}$.

Running time

- Each augmenting path increases flow value by 1
- Max flow is at most V
- Running time of Ford-Fulkerson for bipartite matching is $\mathrm{O}(\mathrm{VE})$

Network design

Edge-disjoint paths

- Given directed graph $G=(V, E)$, source s, destination t
- Find max number of edge-disjoint paths from s to t

Communication network, protection against link failure

Reduction to max flow

Assign capacity 1 to every edge.
Thm. Max \# edge-disjoint paths = max flow.
Proof. \leq
Suppose there are k paths.
Put $f(e)=1$ for e on the paths, $f(e)=0$ otherwise.
Paths are edge-disjoint so f has k edges out of $s,|f|=k$.

Reduction to max flow

Thm. Max \# edge-disjoint paths = max flow.
Proof. \geq
Suppose $|f|=k$.
Ford-Fulkerson implies there is an integral flow of value k
Consider edge (s, u) with $\mathrm{f}(\mathrm{s}, \mathrm{u})=1$.
By flow conservation, there exists (u, v) with $f(u, v)=1$.
Repeatedly apply flow conservation to trace out a path to t. $|f|=k$ so k edges e out of s with $f(e)=1 \rightarrow k$ edge disjoint paths.

Node-disjoint paths

- Given directed graph $G=(V, E)$, source s, destination t
- Find max number of node-disjoint paths from s to t

Communication network, protection against machine failure

Reduction to max flow

Image segmentation

Image segmentation

- Foreground/background segmentation
- Label each pixel as foreground/background
- V=set of pixels, E=neighboring pixels
- $a_{i} \geq 0$: likelihood of pixel i in foreground
- $b_{i} \geq 0$: likelihood of pixel i in background
- $p_{i j} \geq 0$: penalty of separating pixels i, j

- Goal: find partition that maximize \# correct labels
- A formulation: find partition $\mathrm{V}=(\mathrm{A}, \mathrm{B})$ that maximizes

$$
\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

Reduction to min cut

- Maximizing

$$
\sum_{i \in A}^{\infty} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

- Is minimizing

$$
\sum_{i \in V} a_{i}+\sum_{j \in V} b_{j}-\left(\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}\right)
$$

- New objective

$$
\min \sum_{i \in B} a_{i}+\sum_{j \in A} b_{j}+\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

Reduction to min cut

- Add source s and sink t

Densest subgraph

Community detection

- Social network graph G = (V, E)
- Tight-knit community = dense subgraph
- Find densest subgraph $S \subset V$ that maximizes $\frac{2 E(S, S)}{|S|}$

Goldberg's algorithm

- $\frac{2|E(S, S)|}{|S|} \geq c$
- $2|E(S, S)| \geq c|S|$
- $\sum_{v \in S} \operatorname{deg}(v)-|E(S, \bar{S})| \geq c|S|$
- $\sum_{v \in V} \operatorname{deg}(v)-\sum_{v \in \bar{S}} \operatorname{deg}(v)-|E(S, \bar{S})| \geq c|S|$
- $\sum_{v \in \bar{S}} \operatorname{deg}(v)+|E(S, \bar{S})|+c|S| \leq 2|E|$

Goldberg's algorithm

Cut cost $=\sum_{v \in \bar{S}} \operatorname{deg}(v)+|E(S, \bar{S})|+c|S|$
Check if min cut $\leq 2|E|$

