CS 4800: Algorithms \& Data

Lecture 20
April 3, 2018

Optimality of Ford-Fulkerson

Showed:

- For all flow f and cut (A, B), $|f| \leq \operatorname{cap}(A, B)$

3 equivalent statements:

- f is maximum flow
- There is s-t cut (A, B) such that $|f|=\operatorname{cap}(A, B)$
- There is no augmenting path in G_{f}

No augmenting path implies

 $|f|=c a p(A, B)$ for some A, B- Define $\mathrm{A}=\left\{\mathrm{v}\right.$ reachable from s in $\left.\mathrm{G}_{\mathrm{f}}\right\}, B=V \backslash A$
- s is reachable from s to $s \in A$
- t is not reachable from s so $t \notin A$

- All edges e from A to B in G are saturated $(f(e)=$ $c(e)$) since e goes backward in G_{f}
- All edges e from B to A in G are not used since there is no backward edge from A to $\mathrm{B}(f(e)=0)$
- Thus,

$$
|f|=\sum_{u \in A, v \in B} f(u, v)-f(v, u)^{0}
$$

- |f|=cap(A,B)

Max-flow/min-cut theorem

- Maximum flow = minimum cut

Computing min cut

- Given max flow, can compute min cut in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time
- Use BFS to find all vertices reachable from s in G_{f}
- Let $\mathrm{A}=\left\{\right.$ vertices reachable from s in $\left.\mathrm{G}_{\mathrm{f}}\right\}$
- The cut $(A, V \backslash A)$ has $\operatorname{cap}(A, V \backslash A)=|f|$ and hence is minimum

How fast is Ford-Fulkerson?

As much time as $E \cdot\left|f^{*}\right|$

- $\phi=(\sqrt{5}-1) / 2$ so $1-\phi=\phi^{2}$
- Max flow = $2 X+1$
- After $1^{\text {st }}$ augmentation, residual capacities of horizontal edges are 1, $0, \phi$

Suppose inductively that residual capacities are $\phi^{k-1}, 0, \phi^{k}$

New capacities $\phi^{k+1}, \phi^{k}, 0$

New capacities $0, \phi^{k+1}, \phi^{k+2}$

New capacities $\phi^{k+1}, 0, \phi^{k}$

New capacities $\phi^{k+1}, 0, \phi^{k+2}$

Total flow

$$
\begin{aligned}
& +\phi^{k}+\phi^{k} \\
& +\phi^{k+1}+\phi^{k+1}
\end{aligned}
$$

Total flow converges to

$$
1+2 \sum_{k=1}^{\infty} \phi^{k}=4+\sqrt{5}
$$

Dinitz/Edmonds-Karp

- Choose augmenting path with fewest edges
- Use BFS on G_{f} to find augmenting path
- G_{i} : residual graph after i augmentation steps
- level $\mathrm{l}_{\mathrm{i}}(\mathrm{v})$: unweighted shortest path distance from s to v after i augmentation steps

Vertex	s	\mathbf{u}	\mathbf{v}	\mathbf{t}
Level	0	1	1	2

- Edge (u,s) appears AFTER augmentation on (s, u)
- Edge (u,v) disappears

Level increases monotonically

Proof. Fix i. We prove by induction on the value of $\operatorname{level}_{i+1}(v)$.
In base case, level $_{i+1}(v)=0$. It must be $v=s$ and level $_{i}(s)=0$.
In inductive case, assume lemma is true for all v with level $_{i+1}(v)<k$.
Will prove lemma for v with level $_{i+1}(v)=k$.
Let $s \rightarrow \cdots \rightarrow u \rightarrow v$ be shortest path from s to v in G_{i+1}
This path is shortest so level $_{i+1}(u)=$ level $_{i+1}(v)-1=\mathrm{k}-1$.
By induction, $^{\text {level }}\left(\mathrm{i}(u) \leq\right.$ level $_{i+1}(u)$.

1) If (u, v) is an edge in G_{i} then $\operatorname{level}_{i}(v) \leq \operatorname{level}_{i}(u)+1 \leq k$.
2) If (u, v) is not an edge in G_{i} then (v, u) is an edge in $i+1^{\text {st }}$ augmenting path.
(v, u) is on the shortest path from s to u in G_{i}

$$
\operatorname{level}_{i}(v)=\operatorname{level}_{i}(u)-1 \leq k-2
$$

If there is no path from s to v then $\operatorname{level}_{i+1}(v)=\infty$ and lemma is also true for v.

Bottleneck edge

G_{f}

Edge e is bottleneck if residual capacity of e is minimum among edges on augmenting path

Bottleneck edge disappears after augmentation

G_{f}

How many times can $u \rightarrow v$ be bottleneck?

Lemma. Edge $u \rightarrow v$ can be bottleneck at most $\mathrm{V} / 2$ times.
Proof. Suppose $u \rightarrow v$ is bottleck for $\mathrm{i}^{\text {th }}$ augmenting path.
$u \rightarrow v$ is on shortest path in G_{i} so $\operatorname{level}_{i}(u)+1=\operatorname{level}_{i}(v)$.
$u \rightarrow v$ disappears in residual graph afterwards.
For $u \rightarrow v$ to be bottleneck again it must be reintroduced later.

How many times can $u \rightarrow v$ be bottleneck?

$u \rightarrow v$ reappears after $\mathrm{j}^{\text {th }}$ augmentation only if $v \rightarrow u$ is on $\mathrm{j}^{\text {th }}$ aug. path.
$v \rightarrow u$ is on shortest path in G_{j} solevel $_{j}(u)=\operatorname{level}_{j}(v)+1$.
But we have $_{\text {level }}^{j}(v)+1 \geq \operatorname{level}_{i}(v)+1=\operatorname{level}_{i}(u)+2$.
Thus, level(u) increases by at least 2 before $u \rightarrow v$ can be bottleneck again. level(u) increases up to V times throughout algorithm $(0,1, \ldots, V-1, \infty)$.
Thus, $u \rightarrow v$ can be bottleneck at most $\mathrm{V} / 2$ times.

Running time of Dinitz/Edmonds-Karp

- Each augmenting path has 1 bottleneck edge
- Each edge can be bottleneck V/2 times
- Thus, at most VE/2 augmentation steps
- Finding a path requires 1 BFS ($\mathrm{O}(\mathrm{V}+\mathrm{E})$ time)
- Total running time O(VE(V+E))

Bipartite matching

Bipartite matching

Bipartite matching

- Given graph $G=(L \cup R, E)$ where the edges are between L and R
- Find the largest subset $M \subseteq E$ such that each vertex is incident to at most one edge in M

Reduction to max flow

All edges have capacity 1
Find max flow and return all middle edges e with $f(e)=1$

