CS 4800: Algorithms & Data Lecture 20

April 3, 2018

Optimality of Ford-Fulkerson

Showed:

- For all flow f and cut (A,B), $|f| \leq cap(A,B)$
- 3 equivalent statements:
- f is maximum flow
- There is s-t cut (A,B) such that |f| = cap(A,B)
- There is no augmenting path in G_f

No augmenting path implies |f|=cap(A,B) for some A,B

- Define A = {v reachable from s in G_f }, $B = V \setminus A$
- s is reachable from s to $s \in A$
- t is not reachable from s so $t \notin A$

- All edges e from A to B in G are saturated (f(e) = c(e)) since e goes backward in G_f
- All edges e from B to A in G are not used since there is no backward edge from A to B (f(e) = 0)
- Thus,

$$|f| = \sum_{u \in A, v \in B} f(u, v) - f(v, u)$$

• |f|=cap(A,B)

Max-flow/min-cut theorem

• Maximum flow = minimum cut

Computing min cut

- Given max flow, can compute min cut in O(V+E) time
- Use BFS to find all vertices reachable from s in G_f
- Let A ={vertices reachable from s in G_f}
- The cut $(A, V \setminus A)$ has $cap(A, V \setminus A) = |f|$ and hence is minimum

How fast is Ford-Fulkerson?

As much time as $E \cdot |f^*|$

•
$$\phi = (\sqrt{5} - 1)/2$$
 so $1 - \phi = \phi^2$

- Max flow = 2X + 1
- After 1st augmentation, residual capacities of horizontal edges are 1, 0, ϕ

New capacities 0, ϕ^{k+1} , ϕ^{k+2}

Dinitz/Edmonds-Karp

- Choose augmenting path with fewest edges
- Use BFS on G_f to find augmenting path

• G_i : residual graph after i augmentation steps

1

S

99

100

1

u

V

1

99

 level_i(v): unweighted shortest path distance from s to v after i augmentation steps

- Edge (u,s) appears AFTER augmentation on (s,u)
 - Edge (u,v) disappears

Level increases monotonically

Lemma. $level_i(v) \leq level_{i+1}(v)$ for all v, i.

Proof. Fix i. We prove by induction on the value of $level_{i+1}(v)$. In base case, $level_{i+1}(v) = 0$. It must be v = s and $level_i(s) = 0$. In inductive case, assume lemma is true for all v with $level_{i+1}(v) < k$. Will prove lemma for v with $level_{i+1}(v) = k$. Let $s \to \cdots \to u \to v$ be shortest path from s to v in G_{i+1} This path is shortest so $level_{i+1}(u) = level_{i+1}(v) - 1 = k - 1$.

By induction, $level_i(u) \leq level_{i+1}(u)$.

1) If (u,v) is an edge in G_i then $level_i(v) \leq level_i(u) + 1 \leq k$.

2) If (u,v) is not an edge in G_i then (v,u) is an edge in i+1st augmenting path.
(v,u) is on the shortest path from s to u in G_i

 $level_i(v) = level_i(u) - 1 \le k - 2$

If there is no path from s to v then $level_{i+1}(v) = \infty$ and lemma is also true for v.

Bottleneck edge

Edge e is bottleneck if residual capacity of e is minimum among edges on augmenting path

Bottleneck edge disappears after augmentation

How many times can $u \rightarrow v$ be bottleneck?

Lemma. Edge $u \rightarrow v$ can be bottleneck at most V/2 times.

Proof. Suppose $u \rightarrow v$ is bottleck for ith augmenting path.

 $u \rightarrow v$ is on shortest path in G_i so $level_i(u) + 1 = level_i(v)$.

 $u \rightarrow v$ disappears in residual graph afterwards.

For $u \rightarrow v$ to be bottleneck again it must be reintroduced later.

How many times can $u \rightarrow v$ be bottleneck?

 $u \rightarrow v$ reappears after jth augmentation only if $v \rightarrow u$ is on jth aug. path. $v \rightarrow u$ is on shortest path in G_j so $level_j(u) = level_j(v) + 1$. But we have $level_j(v) + 1 \ge level_i(v) + 1 = level_i(u) + 2$. Thus, level(u) increases by at least 2 before $u \rightarrow v$ can be bottleneck again. level(u) increases up to V times throughout algorithm $(0, 1, ..., V - 1, \infty)$. Thus, $u \rightarrow v$ can be bottleneck at most V/2 times.

Running time of Dinitz/Edmonds-Karp

- Each augmenting path has 1 bottleneck edge
- Each edge can be bottleneck V/2 times
- Thus, at most VE/2 augmentation steps
- Finding a path requires 1 BFS (O(V+E) time)
- Total running time O(VE(V+E))

Bipartite matching

Bipartite matching

Bipartite matching

- Given graph G = (L ∪ R, E) where the edges are between L and R
- Find the largest subset $M \subseteq E$ such that each vertex is incident to at most one edge in M

Reduction to max flow

Find max flow and return all middle edges e with f(e)=1