
CS 4800: Algorithms &
Data

Lecture 20

April 3, 2018

Optimality of Ford-Fulkerson

Showed:

• For all flow f and cut (A,B), |𝑓| ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

3 equivalent statements:

• f is maximum flow

• There is s-t cut (A,B) such that |f| = cap(A,B)

• There is no augmenting path in Gf

No augmenting path implies
|f|=cap(A,B) for some A,B
• Define A = {v reachable from s in Gf}, 𝐵 = 𝑉 ∖ 𝐴

• s is reachable from s to s ∈ 𝐴

• t is not reachable from s so 𝑡 ∉ 𝐴

A B

s t

Not possible since
A would be larger

Gf

A B

s t

Not possible since
A would be larger

• All edges e from A to B in G are saturated (𝑓 𝑒 =
𝑐(𝑒)) since e goes backward in Gf

• All edges e from B to A in G are not used since
there is no backward edge from A to B (𝑓(𝑒) = 0)

• Thus,

𝑓 =

𝑢∈𝐴,𝑣∈𝐵

𝑓 𝑢, 𝑣 − 𝑓 𝑣, 𝑢

• |f|=cap(A,B)

0

Gf

Max-flow/min-cut theorem

• Maximum flow = minimum cut

Computing min cut

• Given max flow, can compute min cut in O(V+E)
time

• Use BFS to find all vertices reachable from s in Gf

• Let A ={vertices reachable from s in Gf}

• The cut (𝐴, 𝑉 ∖ 𝐴) has cap 𝐴, 𝑉 ∖ 𝐴 = 𝑓 and
hence is minimum

How fast is Ford-Fulkerson?

s

u

v

t

0/100

0/100 0/100

0/1

0/1001/100

1/1

1/100

G

1/100

1/100

As much time as 𝐸 ∙ |𝑓∗|

s

a b c d

t

X X X

X X

1 1 𝜙

• 𝜙 = (5 − 1)/2 so 1 − 𝜙 = 𝜙2

• Max flow = 2X + 1
• After 1st augmentation, residual

capacities of horizontal edges
are 1, 0, 𝜙

X

s

a b c d

t

𝜙𝑘−1 0 𝜙𝑘

Suppose inductively that residual capacities are 𝜙𝑘−1, 0, 𝜙𝑘

New capacities 𝜙𝑘+1, 𝜙𝑘 , 0

s

a b c d

t

𝜙𝑘+1 0𝜙𝑘

New capacities 𝜙𝑘+1, 0, 𝜙𝑘

s

a b c d

t

𝜙𝑘+1 0 𝜙𝑘

New capacities 0, 𝜙𝑘+1, 𝜙𝑘+2

s

a b c d

t

𝜙𝑘+10 𝜙𝑘+2

New capacities 𝜙𝑘+1, 0, 𝜙𝑘+2

Total flow

+𝜙𝑘 +𝜙𝑘

+𝜙𝑘+1 +𝜙𝑘+1

1 + 2

𝑘=1

∞

𝜙𝑘 = 4 + 5

Total flow converges to

Dinitz/Edmonds-Karp

• Choose augmenting path with fewest edges

• Use BFS on Gf to find augmenting path

• Gi : residual graph after i augmentation steps

• leveli(v): unweighted shortest path distance from s
to v after i augmentation steps

s

u

v

t

0/100

0/1001/100

1/1

1/100

s

u

v

t

100

100

1

99

1

99

1

Vertex s u v t

Level 0 1 1 2

• Edge (u,s) appears AFTER
augmentation on (s,u)

• Edge (u,v) disappears

Level increases monotonically
Lemma. 𝑙𝑒𝑣𝑒𝑙𝑖(𝑣) ≤ 𝑙𝑒𝑣𝑒𝑙𝑖+1(𝑣) for all v, i.

Proof. Fix i. We prove by induction on the value of 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑣 .

Let 𝑠 → ⋯ → 𝑢 → 𝑣 be shortest path from s to v in 𝐺𝑖+1

This path is shortest so 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑢 = 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑣 − 1 = k − 1.

In base case, 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑣 = 0. It must be 𝑣 = 𝑠 and 𝑙𝑒𝑣𝑒𝑙𝑖 𝑠 = 0.

In inductive case, assume lemma is true for all v with 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑣 < 𝑘.

Will prove lemma for v with 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑣 = 𝑘.

If there is no path from s to v then 𝑙𝑒𝑣𝑒𝑙𝑖+1 𝑣 = ∞ and lemma is
also true for v.

By induction, 𝑙𝑒𝑣𝑒𝑙𝑖(𝑢) ≤ 𝑙𝑒𝑣𝑒𝑙𝑖+1(𝑢).

1) If (u,v) is an edge in Gi then 𝑙𝑒𝑣𝑒𝑙𝑖 𝑣 ≤ 𝑙𝑒𝑣𝑒𝑙𝑖 𝑢 + 1 ≤ 𝑘.

2) If (u,v) is not an edge in Gi then (v,u) is an edge in i+1st augmenting path.

(v,u) is on the shortest path from s to u in Gi

𝑙𝑒𝑣𝑒𝑙𝑖 𝑣 = 𝑙𝑒𝑣𝑒𝑙𝑖 𝑢 − 1 ≤ 𝑘 − 2

Bottleneck edge

s

u

v

t

100

100 100

1

100

Gf

Edge e is bottleneck if residual capacity of e is minimum among
edges on augmenting path

Bottleneck edge disappears after
augmentation

s

u

v

t

100

100 100

1

100

Gf

99

99

1 1

How many times can 𝑢 → 𝑣 be bottleneck?
Lemma. Edge 𝑢 → 𝑣 can be bottleneck at most V/2 times.

Proof. Suppose 𝑢 → 𝑣 is bottleck for ith augmenting path.

𝑢 → 𝑣 is on shortest path in Gi so 𝑙𝑒𝑣𝑒𝑙𝑖 𝑢 + 1 = 𝑙𝑒𝑣𝑒𝑙𝑖 𝑣 .

𝑢 → 𝑣 disappears in residual graph afterwards.

For 𝑢 → 𝑣 to be bottleneck again it must be reintroduced later.

s

u

v

t

How many times can 𝑢 → 𝑣 be bottleneck?

𝑢 → 𝑣 reappears after jth augmentation only if 𝑣 → 𝑢 is on jth aug. path.

𝑣 → 𝑢 is on shortest path in Gj so 𝑙𝑒𝑣𝑒𝑙𝑗 𝑢 = 𝑙𝑒𝑣𝑒𝑙𝑗 𝑣 + 1.

But we have 𝑙𝑒𝑣𝑒𝑙𝑗 𝑣 + 1 ≥ 𝑙𝑒𝑣𝑒𝑙𝑖 𝑣 + 1 = 𝑙𝑒𝑣𝑒𝑙𝑖 𝑢 + 2.

Thus, level(u) increases by at least 2 before 𝑢 → 𝑣 can be bottleneck again.

level(u) increases up to V times throughout algorithm (0, 1, … , 𝑉 − 1,∞).

Thus, 𝑢 → 𝑣 can be bottleneck at most V/2 times.

s

u

v

t

Running time of Dinitz/Edmonds-Karp

• Each augmenting path has 1 bottleneck edge

• Each edge can be bottleneck V/2 times

• Thus, at most VE/2 augmentation steps

• Finding a path requires 1 BFS (O(V+E) time)

• Total running time O(VE(V+E))

Bipartite matching

Bipartite matching

Bipartite matching

• Given graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) where the edges are
between L and R

• Find the largest subset 𝑀 ⊆ 𝐸 such that each
vertex is incident to at most one edge in M

Reduction to max flow

s t

All edges have capacity 1

Find max flow and return all middle edges e with f(e)=1

