CS 4800: Algorithms \& Data

Lecture 19
March 30, 2018

Max flow, min cut
"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

Ford-Fulkerson attributed to T. Harris

Harris－Ross ‘55
（7）Operating divisions．Those located in Russic are believed to be accurately located．Some Russian divisions（ $2,3,4$ and 13 ）are located in two regions and are so indicated．Divisions shown in the satellites are indicated according to the outhors＇best judgment since infelligence reports are unavailable．Troin capocities in Russia ore for 1000 －net－ton troins or their equivalent．Troin capacities in Poland are for 666 net tons（or the equivalent）．Train capacities in all other satellites ore for 400 net tons（or the equivalent） except in East Germany．In East Germany，troin capacities are those of entering lines．The numbers shown in boxes are tota！ interdivisional cosocities．

Legend:

-..- International boundary
(B) Railway operating division

स $\frac{9}{12}$ - Capacity: 12 each way per day. Pequired flow of 9 per day toward destinations (in direction of arrow) with equivalent number of returning roins in opposite direction

All capacities in trains $\left.\begin{array}{c}\text { trioo's of tons }\end{array}\right\}$ each way per duy
Origins: Divisions $2,3 \mathrm{~W}, 3 \mathrm{E}, 2 \mathrm{~S}, 13 \mathrm{~N}, 13 \mathrm{~S}$,
12,52(USSR), and Roumania
Destinations: Divisions 3, 6,9 (Polond);
B (Czechoslovavakio); and 2,3 \{Austrla)
Alternative destinations: Germany or Eas Germany

Note IIX at Oivision 9, Foland

Assumption:
Entire network available for east-west traffic (no afiowance for civitian or economic traffic

Results:
(a) 163,000 tons per day can be delivered from points of origin to destinations
(b) 147,000 tons per day can be delivered without using Austrian lines.
(c) 152,000 tons per day can be delivered into Germany by oll lines.
(d) 126,000 tons yer day con be delivered into East Germany without using Austrion lines

Fig. 7 - Troffic pattern: entire
network arailable

Flow network

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ directed
- Source vertex s, sink vertex t
- Each edge e has a capacity $c(e) \geq 0$

Flow

- Each edge e has a flow amount $f(e) \geq 0$
- Capacity constraints: $f(e) \leq c(e) \forall e \in E$
- Flow conservation: for every node $u \neq s, t$

$$
\sum_{v \in V} f(u, v)=\sum_{v \in V} f(v, u)
$$

Total out flow Total in flow

- Value $|f|=$ net out flow of $s=$ net in flow of t $=\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s)$

Example

Saturated: Flow = Capacity
Flow value/Capacity

Total out flow of s: 7
Total in flow of t : 7

Max flow

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and capacities c
- Find flow f maximizing value |f|

Greedy?

Need to allow for correction

- Residual graph $\mathrm{G}_{\mathrm{f}}=\left(\mathrm{V}, \mathrm{E}_{\mathrm{f}}\right)$ based on $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and f
- For each $(u, v) \in E$
- Edge (u, v) in E_{f} with capacity $c(u, v)-f(u, v)$
- Edge (v, u) in E_{f} with capacity $f(u, v)$

How much more flow can be sent forward?

Greedy with correction

G

G_{f}

Augmenting paths

- Path from s to t in G_{f} consisting of only edges with positive residual capacities

Ford-Fulkerson algorithm

- Initialize $f(u, v)=0$ for all ($u, v)$
- While there exists an augmenting path p in G_{f}
- Let D be minimum capacity of edges in p
- For all forward edges e in p
- Increase f(e) by D
- For all backward edges e in p
- Decrease f(e) by D

Termination

- f is always a valid flow
- Initially, $\mathrm{f}=0$ is valid
- When flow is augmented along path p,
- Capacities are not violated
- Augment by D = minimum residual capacity
- Flow conservation is preserved
- Flow is pushed along a path so at any intermediate vertex, flow in = flow out
- If all c(e) are integers then all f(e) are always integers
- Inductively, all residual capacities are integers so D is an integer and the flow stays integral
- Flow increases by ≥ 1 every time so algo eventually finishes

Is final flow fany good?

Optimality

Optimal since flow value $=3$ and capacities out of s is 3

What about

s-t cut

- A partition of vertices into two sets A, B with $s \in A$ and $t \in B$
- Capacity of cut A, B is

$$
\operatorname{cap}(\mathrm{A}, \mathrm{~B})=\sum_{u \in A, v \in B} c(u, v)
$$

Flow value \leq cut capacity

- Flow value $=\sum_{v \in V} f(s, v)-f(v, s) \longleftarrow$ Net out flow from s
- By flow conservation, $0=\sum_{v \in V} f(u, v)-f(v, u)$ for all $u \neq s, t$
- Thus, flow value $=\sum_{u \in A, v \in V} f(u, v)-f(v, u) \longleftarrow$ Net out flow from A

$$
=\sum_{u \in A, v \in A} f(u, \hat{u})-f(v, u)+\sum_{u \in A, v \in B} f(u, v)-f(v, u)
$$

$$
\begin{aligned}
& u=a, v=b \\
& u=b, v=a
\end{aligned}
$$

Net flow from A to $\mathrm{A}=0$

Flow value \leq cut capacity

- Flow value $=\sum_{u \in A, v \in B} f(u, v)-f(v, u)$
- By capacity constraints,

$$
\sum_{u \in A, v \in B} f(u, v)-f(v, u) \leq \sum_{u \in A, v \in B} f(u, v) \leq \sum_{u \in A, v \in B} c(u, v)
$$

Optimality

3 equivalent statements:

- f is maximum flow
- There is s-t cut (A, B) such that $|f|=\operatorname{cap}(A, B)$
- There is no augmenting path in G_{f}

$|\mathrm{f}|=\operatorname{cap}(\mathrm{A}, \mathrm{B})$ implies f maximum

- $\left|f^{\prime}\right| \leq \operatorname{cap}(A, B)$ for all flow f^{\prime}
- Thus f is optimal
f maximum implies no augmenting path
- Prove the contrapositive
- If there were augmenting path p then FordFulkerson can improve value of f
- Thus f is not maximum

No augmenting path implies

 $|f|=c a p(A, B)$ for some A, B- Define $\mathrm{A}=\left\{\mathrm{v}\right.$ reachable from s in $\left.\mathrm{G}_{\mathrm{f}}\right\}, B=V \backslash A$
- s is reachable from s to $s \in A$
- t is not reachable from s so $t \notin A$

- All edges e from A to B in G are saturated $(f(e)=$ $c(e)$) since e goes backward in G_{f}
- All edges e from B to A in G are not used since there is no backward edge from A to $\mathrm{B}(f(e)=0)$
- Thus,

$$
|f|=\sum_{u \in A, v \in B} f(u, v)-f(v, u)^{0}
$$

- |f|=cap(A,B)

