
CS 4800: Algorithms & 
Data

Lecture 18

March 23, 2018



Negative weights?

• What goes wrong with previous proof?

• When v is removed, d(v) < d(y) for all unremoved y 
so no way shortest path goes from s to v via y

s
u v

x y
< 0



Infinitely short path?

Restrict our attention to the case
with no negative cycles

1 1-1

-1-1



More dynamic programming

• d(i, v): min distance from s to v using at most i edges

• Without negative cycles, shortest paths use at most V-1 
edges

• 𝑑(𝑖, 𝑣) = ൞

0 𝑓𝑜𝑟 𝑣 = 𝑠
∞ 𝑓𝑜𝑟 𝑣 ≠ 𝑠, 𝑖 = 0

min
𝑢∈𝑉

𝑑 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣



Bellman-Ford algorithm

• Initialize 𝑑(0, 𝑠) = 0 and 𝑑 0, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• For i from 1 to V-1

• Set 𝑑 𝑖, 𝑣 ← 𝑑 𝑖 − 1, 𝑣 for all v

• For all edges 𝑢 → 𝑣 in E

• If 𝑑 𝑖, 𝑣 > 𝑑 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑑 𝑖, 𝑣 ← 𝑑 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑝𝑟𝑒𝑑(𝑖, 𝑣) ← 𝑢

O(VE) time



-1

4
3

2

-3

5

2

1

0 0 ∞ ∞ ∞ ∞

1 0 4 −1 ∞ ∞

2 0 2 −1 1 1

3 0 2 −1 1 −2

4 0 2 −1 1 −2

i



All pair shortest paths

• So far, only a single source s

• What if we want shortest paths between all pairs?

• Non-negative weights: Run Dijkstra’s for all s

• Running time: O(V(V+E)log V)

• General weights, no negative cycle: Run Bellman-Ford for all s

• Running time: O(V2E)

• Next: better solution for general weights, no negative cycles



Floyd-Warshall algorithm

• d(i,j,k): Length of shortest path from i to j if we only 
use vertices 1…k as intermediate points

• Base cases

𝑑(𝑖, 𝑗, 0) = ቐ
0 𝑖𝑓 𝑖 = 𝑗

𝑤 𝑖, 𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Recurrence relation

• How to compute d(i, j, k) from 𝑑 ∗,∗, 𝑘 − 1 ?

• Two possibilities:

• Do not use k as an intermediate point
𝑑 𝑖, 𝑗, 𝑘 = 𝑑(𝑖, 𝑗, 𝑘 − 1)

• Use k as an intermediate point
𝑑 𝑖, 𝑗, 𝑘 = 𝑑 𝑖, 𝑘, 𝑘 − 1 + 𝑑(𝑘, 𝑗, 𝑘 − 1)

• Pick the best of two choices
𝑑 𝑖, 𝑗, 𝑘 = min(𝑑 𝑖, 𝑗, 𝑘 − 1 , 𝑑 𝑖, 𝑘, 𝑘 − 1 + 𝑑 𝑘, 𝑗, 𝑘 − 1 )

i j

k

𝑑 𝑖, 𝑗, 𝑘 − 1

𝑑 𝑖, 𝑘, 𝑘 − 1 𝑑(𝑘, 𝑗, 𝑘 − 1)



Floyd-Warshall algorithm

• Initialize 𝑑(𝑖, 𝑗, 0) = ቐ
0 𝑖𝑓 𝑖 = 𝑗

𝑤 𝑖, 𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• For k from 1 to V

• For i from 1 to V

• For j from 1 to V

• 𝑑 𝑖, 𝑗, 𝑘 = min ቊ
𝑑 𝑖, 𝑗, 𝑘 − 1

𝑑 𝑖, 𝑘, 𝑘 − 1 + 𝑑(𝑘, 𝑗, 𝑘 − 1)



Save memory

• Initialize 𝑑(𝑖, 𝑗) = ቐ
0 𝑖𝑓 𝑖 = 𝑗

𝑤 𝑖, 𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• For k from 1 to V

• For i from 1 to V

• For j from 1 to V

• 𝑑 𝑖, 𝑗 = min ቊ
𝑑 𝑖, 𝑗

𝑑 𝑖, 𝑘 + 𝑑(𝑘, 𝑗)

O(V3) time, O(V2) space



Max flow, min cut



“Consider a rail network connecting two cities by way of a
number of intermediate cities, where each link of the
network has a number assigned to it representing its
capacity. Assuming a steady state condition, find a
maximal flow from one given city to the other.”

Ford-Fulkerson attributed to T. Harris



Harris-Ross ‘55



Harris-Ross ‘55


