CS 4800: Algorithms \& Data

Lecture 18
March 23, 2018

Negative weights?

- What goes wrong with previous proof?

- When v is removed, $d(v)<d(y)$ for all unremoved y so no way shortest path goes from s to v via y

Infinitely short path?

Restrict our attention to the case with no negative cycles

More dynamic programming

- $\mathrm{d}(\mathrm{i}, \mathrm{v})$: min distance from s to v using at most i edges
- Without negative cycles, shortest paths use at most V-1 edges
$d(i, v)=\left\{\begin{array}{c}0 \text { for } v=s \\ \infty \text { for } v \neq s, i=0 \\ \min _{u \in V} d(i-1, u)+w(u, v)\end{array}\right.$

Bellman-Ford algorithm

- Initialize $d(0, s)=0$ and $d(0, v)=\infty$ for all $v \neq s$
- For i from 1 to V-1
- Set $d(i, v) \leftarrow d(i-1, v)$ for all v
- For all edges $u \rightarrow v$ in E
- If $d(i, v)>d(i-1, u)+w(u, v)$
- $d(i, v) \leftarrow d(i-1, u)+w(u, v)$
- $\operatorname{pred}(i, v) \leftarrow u$

O(VE) time

i		$\frac{\square}{E}$	$\because 0$		
0	0	∞	∞	∞	∞
1	0	4	-1	∞	∞
2	0	2	-1	1	1
3	0	2	-1	1	-2
4	0	2	-1	1	-2

All pair shortest paths

- So far, only a single source s
- What if we want shortest paths between all pairs?
- Non-negative weights: Run Dijkstra's for all s
- Running time: O(V(V+E)log V)
- General weights, no negative cycle: Run Bellman-Ford for all s
- Running time: O(V²E)
- Next: better solution for general weights, no negative cycles

Floyd-Warshall algorithm

- $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$: Length of shortest path from i to j if we only use vertices 1...k as intermediate points
- Base cases

$$
d(i, j, 0)=\left\{\begin{array}{c}
0 \text { if } i=j \\
w(i, j) \text { if }(i, j) \in E \\
\infty \text { otherwise }
\end{array}\right.
$$

Recurrence relation

- How to compute $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ from $d(*, *, k-1)$?
- Two possibilities:
- Do not use k as an intermediate point

$$
d(i, j, k)=d(i, j, k-1)
$$

- Use k as an intermediate point

$$
d(i, j, k)=d(i, k, k-1)+d(k, j, k-1)
$$

- Pick the best of two choices

$$
d(i, j, k)=\min (d(i, j, k-1), d(i, k, k-1)+d(k, j, k-1))
$$

Floyd-Warshall algorithm

- Initialize $d(i, j, 0)=\left\{\begin{array}{c}0 \text { if } i=j \\ w(i, j) \text { if }(i, j) \in E \\ \infty \text { otherwise }\end{array}\right.$
- For k from 1 to V
- For i from 1 to V
- For j from 1 to V

$$
\cdot d(i, j, k)=\min \left\{\begin{array}{c}
d(i, j, k-1) \\
d(i, k, k-1)+d(k, j, k-1)
\end{array}\right.
$$

Save memory

- Initialize $d(i, j)=\left\{\begin{array}{c}0 \text { if } i=j \\ w(i, j) \text { if }(i, j) \in E \\ \infty \text { otherwise }\end{array}\right.$
- For k from 1 to V
- For i from 1 to V
- For j from 1 to V

$$
\cdot d(i, j)=\min \left\{\begin{array}{c}
d(i, j) \\
d(i, k)+d(k, j)
\end{array}\right.
$$

$\mathrm{O}\left(\mathrm{V}^{3}\right)$ time, $\mathrm{O}\left(\mathrm{V}^{2}\right)$ space

Max flow, min cut
"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

Ford-Fulkerson attributed to T. Harris

Harris－Ross ‘55
（7）Operating divisions．Those located in Russic are believed to be accurately located．Some Russian divisions（ $2,3,4$ and 13 ）are located in two regions and are so indicated．Divisions shown in the satellites are indicated according to the outhors＇best judgment since infelligence reports are unavailable．Troin capocities in Russia ore for 1000 －net－ton troins or their equivalent．Troin capacities in Poland are for 666 net tons（or the equivalent）．Train capacities in all other satellites ore for 400 net tons（or the equivalent） except in East Germany．In East Germany，troin capacities are those of entering lines．The numbers shown in boxes are tota！ interdivisional cosocities．

Legend:

-..- International boundary
(B) Railway operating division

स $\frac{9}{12}$ - Capacity: 12 each way per day. Pequired flow of 9 per day toward destinations (in direction of arrow) with equivalent number of returning roins in opposite direction

All capacities in trains $\left.\begin{array}{c}\text { trioo's of tons }\end{array}\right\}$ each way per duy
Origins: Divisions $2,3 \mathrm{~W}, 3 \mathrm{E}, 2 \mathrm{~S}, 13 \mathrm{~N}, 13 \mathrm{~S}$,
12,52(USSR), and Roumania
Destinations: Divisions 3, 6,9 (Polond);
B (Czechoslovavakio); and 2,3 \{Austrla)
Alternative destinations: Germany or Eas Germany

Note IIX at Oivision 9, Foland

Assumption:
Entire network available for east-west traffic (no afiowance for civitian or economic traffic

Results:
(a) 163,000 tons per day can be delivered from points of origin to destinations
(b) 147,000 tons per day can be delivered without using Austrian lines.
(c) 152,000 tons per day can be delivered into Germany by oll lines.
(d) 126,000 tons yer day con be delivered into East Germany without using Austrion lines

Fig. 7 - Troffic pattern: entire
network arailable

