CS 4800: Algorithms \& Data

Lecture 16

March 16, 2018

Minimum spanning tree (MST)

- $G=(V, E, w)$, w positive
- Want a set of edges that connects all V and has minimum cost
- For simplicity, assume all weights are distinct

Blue rule

- Pick a set of nodes S
- Color minimum weight edge in cut induced by S blue

Red rule

- Pick a cycle C
- Color the maximum weight edge in C red

What we proved

- All blue edges belong to the minimum spanning tree
- All red edges do not belong to the minimum spanning tree

Generic algorithm

- Maintain an acyclic set of blue edges F
- Initially no edge is colored, $F=\emptyset$
- Repeat the following in arbitrary order
- Consider a cut with no blue edge. Color the minimum weight edge in the cut blue.
- Consider a cycle with no red edge. Color the maximum weight edge in the cycle red.
- Terminate when V-1 edges colored blue.

Kruskal's algorithm

- Consider edges in order of increasing weights
- When considering $e=(u, v)$
- If u and v are connected by F, color e red
- If u and v are not connected by F, color e blue

- Consider edges in order of increasing weights
- When considering $e=(u, v)$

Example

- If u and v are connected by F, color e red
- If u and v are not connected by F, color e blue

Prim's algorithm

- Pick an arbitrary root node u
- $\mathrm{S}=\{$ nodes connected to u by blue edges $\}$
- While $S \neq V$
- Apply blue rule to cut induced by S

Example

- Pick an arbitrary root node u= 웅
- $S=\{$ nodes connected to u by blue edges\}
- While $S \neq V$
- Apply blue rule to cut induced by S

Prim's algorithm

- Pick an arbitrary root node u
- $\mathrm{S}=\{$ nodes connected to u by blue edges\}
- While $S \neq V$

Need to maintain collection

- Apply blue rule to cut induced by S of edges and find minimum

Priority queue

- Data structure maintaining collection of pairs (id, key)
- Insert: Insert a new pair (id, key) into the queue
- Find-min: Find the pair with minimum key
- Extract-min: Find the pair with minimum key and remove it from the queue
- Decrease-key(id, D): Decrease the key of element id to D

Binary heap

- Full binary tree
- Each node stores an (id, key) pair
- Key of parent is no larger than keys of children

Implicit binary heap

- Store as array Q[1...n]
- The children of node i are nodes $2 i$ and $2 i+1$

Index	1	2	3	4	5	6
Key	2	3	7	8	5	9

Insert

- Put new key at next available spot
- Bubble up to maintain heap property
- Insert takes O(log n) time

Decrease-key

- Bubble up to maintain heap property
- Decrease-key takes O(log n) time

Find-min

- Minimum is always at the top of the heap
- Find-min runs in $\mathrm{O}(1)$

Extract-min

- Remove top node
- Put bottom node at the top
- Bubble down to maintain heap property

Running time of heap

Operation	Binary heap	Fibonacci heap
Insert	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(1)$
Find-min	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Extract-min	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$
Decrease-key	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(1) \quad$ (amortized)

Prim's algorithm

- Pick root node u
- $\mathrm{S}=\{$ nodes connected to u by blue edges\}
- While $S \neq V$
- Find min weight edge between S and $V \backslash S$ and color it blue
- Update S (new edges between S and $V \backslash S$)

Implementing Prim's algorithm

- $Q=\emptyset, F=\varnothing$
- Pick start node u, insert $(u, 0)$ into Q
- Insert (v, ∞) into Q for all vertices $v \neq u$
- Set $\operatorname{pred}(v)=u$ for all vertices v
- While $Q \neq \varnothing$

V times $\cdot z \leftarrow$ ExtractMin $(Q) \longleftarrow \mathrm{O}(\log \mathrm{V})$

- $F \leftarrow F \cup\{(z, \operatorname{pred}(z))\}$
- For $v \in \operatorname{adjacent(z)}$
- If $v \in Q$ and $\operatorname{key}(v)>w(z, v)$

E times

- $\operatorname{DecreaseKey}(v, w(z, v)) \longleftarrow \mathrm{O}(\log \mathrm{V})$

Update S and key(v) S and $V \backslash S$ and color it blue

- $\operatorname{pred}(v) \leftarrow z$
$\mathrm{O}((\mathrm{V}+\mathrm{E}) \log \mathrm{V})$ time

