CS 4800: Algorithms & Data Lecture 16

March 16, 2018

Minimum spanning tree (MST)

- G = (V, E, w), w positive
- Want a set of edges that connects all V and has minimum cost
- For simplicity, assume all weights are distinct

Blue rule

- Pick a set of nodes S
- Color minimum weight edge in cut induced by S
 blue

Red rule

- Pick a cycle C
- Color the maximum weight edge in C red

What we proved

- All blue edges belong to the minimum spanning tree
- All red edges do not belong to the minimum spanning tree

Generic algorithm

- Maintain an acyclic set of blue edges F
- Initially no edge is colored, $F = \emptyset$
- Repeat the following in arbitrary order
 - Consider a cut with no blue edge. Color the minimum weight edge in the cut blue.
 - Consider a cycle with no red edge. Color the maximum weight edge in the cycle red.
 - Terminate when V-1 edges colored blue.

Kruskal's algorithm

- Consider edges in order of increasing weights
- When considering e=(u,v)
 - If u and v are connected by F, color e red
 - If u and v are not connected by F, color e blue

All edges on u to v path are colored/considered before (u,v) → have smaller weight than e

S={nodes connected to u by F}

 $V \setminus S$

Prim's algorithm

- Pick an arbitrary root node u
- S = {nodes connected to u by blue edges}
- While $S \neq V$
 - Apply blue rule to cut induced by S

Prim's algorithm

- Pick an arbitrary root node u
- S = {nodes connected to u by blue edges}
- While $S \neq V$
 - Apply blue rule to cut induced by S

Priority queue

- Data structure maintaining collection of pairs (id, key)
- Insert: Insert a new pair (id, key) into the queue
- Find-min: Find the pair with minimum key
- Extract-min: Find the pair with minimum key and remove it from the queue
- Decrease-key(id, D): Decrease the key of element id to D

Binary heap

- Full binary tree
- Each node stores an (id, key) pair
- Key of parent is no larger than keys of children

Implicit binary heap

- Store as array Q[1...n]
- The children of node i are nodes 2i and 2i+1

Index	1	2	3	4	5	6
Кеу	2	3	7	8	5	9

Insert

- Put new key at next available spot
- Bubble up to maintain heap property
- Insert takes O(log n) time

Decrease-key

- Bubble up to maintain heap property
- Decrease-key takes O(log n) time

Find-min

- Minimum is always at the top of the heap
- Find-min runs in O(1)

Extract-min

- Remove top node
- Put bottom node at the top
- Bubble down to maintain heap property
- Extract-min runs in O(log n) time

Running time of heap

Operation	Binary heap	Fibonacci heap
Insert	O(log n)	O(1)
Find-min	O(1)	O(1)
Extract-min	O(log n)	O(log n)
Decrease-key	O(log n)	O(1) (amortized)

Prim's algorithm

- Pick root node u
- S = {nodes connected to u by blue edges}
- While $S \neq V$
 - Find min weight edge between S and $V \setminus S$ and color it blue
 - Update S (new edges between S and $V \setminus S$)

Implementing Prim's algorithm

key(v) = min weight edge between v and S

- $Q = \emptyset$, $F = \emptyset$
- Pick start node u, insert (u, $\overline{0}$) into Q^2
- Insert (v, ∞) into Q for all vertices $v \neq u$
- Set pred(v) = u for all vertices v
- While $Q \neq \emptyset$

V times • $z \leftarrow ExtractMin(Q) \leftarrow O(\log V)$

- $F \leftarrow F \cup \{(z, pred(z))\}$
- For $v \in adjacent(z)$
 - If $v \in Q$ and key(v) > w(z, v)

E times

- DecreaseKey(v, w(z, v)) \frown O(log V)
 - $pred(v) \leftarrow z$

O((V+E)log V) time

Find min weight edge between S and $V \setminus S$ and color it blue

Update S and key(v) for v in $V \setminus S$