CS 4800: Algorithms \& Data

Lecture 15
 March 2, 2018

(Depth-First) Search in Graph

- Search(vertex v)
- explored $[v] \leftarrow 1$
- For $(v, w) \in E$
- If explored $[w]=0$ then
- parent $[w] \leftarrow v$
- search(w)
- post-visit(v)

Observations

- If $(u, v) \in E$ then

Search(vertex v)
explored $[v] \leftarrow 1$
For $(v, w) \in E$
If explored $[w]=0$ then parent $[w] \leftarrow v$ search(w)
post-visit(v) postorder $[u]<$ postorder $[v] \leftrightarrow(u, v)$ is backward

Observations

- If $(u, v) \in E$ then postorder $[u]<$ postorder $[v] \leftrightarrow(u, v)$ is backward
Proof:
- search(v) finishes after searches for its children finish
- If (u, v) is tree edge then postorder[u] > postorder[v]
- If (u, v) is forward edge then postorder[u] > postorder[v]
- If (u, v) is backward then postorder[u] < postorder[v]
- If postorder $[u]<\operatorname{postorder}[v]$ then search(u) finishes before search(v).
- Thus, search(v) is not called by search(u)
- explored[v]=1 when running search(u) i.e. search(v) started before search(u)
- Search(v) starts before and ends after search(u)
- Can only happen for backward edge
- Cannot happen for cross edge

Topological sort

- Directed graph G=(V,E)
- Scheduling
- Vertices: tasks
- Edges: Precedence constraints: edge (u,v) implies u must finish before v can start
- Compiling large programs (e.g. in Go)
- Vertices: modules
- Edges: dependencies: edge (u,v) implies module v depends on module u
- Goal: figure out an ordering to satisfy all precedence constraints
- Observation: impossible if there are cyclic constraints
- Directed acyclic graph (DAG)

Topological sort

- Claim: Scheduling by decreasing postorder satisfies all constraints.

Proof.
If G is acyclic then there is no backward edge.
Thus, for all edge (u, v), we have postorder[u] > postorder[v].
If schedule by decreasing postorder, when v is processed, all prerequisites for v are already processed.

Minimum spanning trees

Put cable links to connect all houses

Minimum spanning tree (MST)

- $G=(V, E, w)$, w positive
- Want a set of edges that connects all V and has minimum cost
- For simplicity, assume all weights are distinct

Minimum spanning tree (MST)

Looking for a set T of edges that

- Connect all vertices
- Has minimum total cost

Does T have cycles?
Can remove 1 cycle edge to reduce cost
How many edges does T have?

Blue rule

- Pick a set of nodes S
- Color minimum weight edge in cut induced by S blue

All blue edges are essential

Lemma. MST contains every blue edge.
Proof. Let S be arbitrary subset of nodes and $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ be the minimum weight edge with one end point in S .

Let T be MST that does not contain e.
T connects u and v so there is a path from u to v in T.
The path must have an edge e with exactly one end point in S .
Consider $T^{\prime}=T \cup\{e\} \backslash\left\{e^{\prime}\right\}$
T^{\prime} connects 2 ends of é so T^{\prime} still connects all nodes.

$$
w\left(T^{\prime}\right)=w(T)+w(e)-w\left(e^{\prime}\right)
$$

But $w(e)<w\left(e^{\prime}\right)$ so $w\left(T^{\prime}\right)<w(T)$ i.e. T cannot be minimum.

Blue edges connect all nodes

- Assume for contradiction that some u \& v are not connected by blue edges.
- Apply blue rule to S yields another blue edge
- MST = set of blue edges

Red rule

- Pick a cycle C
- Color the maximum weight edge in C red

All red edges are useless

Lemma. MST contains no red edges.
Proof. Let C be a cycle and e=(u,v) be corresponding red edge. Let T be MST containing e.
$T \backslash\{e\}$ has 2 connected components S and $\mathrm{V} \backslash S$ C is a cycle so $C \backslash\{e\}$ is a path connecting $\mathrm{u} \& \mathrm{v}$. There must be an edge e' on this path with exactly one end point in S .
Consider $T^{\prime}=T \backslash\{e\} \cup\left\{e^{\prime}\right\}$
e' connects S and $V \backslash S$ so T^{\prime} connects all nodes. $w\left(T^{\prime}\right)=w(T)+w\left(e^{\prime}\right)-w(e)$
But $w\left(e^{\prime}\right)<w(e)$ so $w\left(T^{\prime}\right)<w(T)$ i.e. T cannot be minimum.

Exercise

- Color as many edges red or blue as you can

Generic algorithm

- Maintain an acyclic set of blue edges F
- Initially no edge is colored, $F=\emptyset$
- Repeat the following in arbitrary order
- Consider a cut with no blue edge. Color the minimum weight edge in the cut blue.
- Consider a cycle with no red edge. Color the maximum weight edge in the cycle red.
- Terminate when $\mathrm{n}-1$ edges colored blue.

Kruskal's algorithm

- Consider edges in order of increasing weights
- When considering $e=(u, v)$
- If u and v are connected by F, color e red
- If u and v are not connected by F, color e blue

- Consider edges in order of increasing weights
- When considering $e=(u, v)$

Example

- If u and v are connected by F, color e red
- If u and v are not connected by F, color e

