CS 4800: Algorithms & Data

Lecture 14 February 27, 2018

Graphs

- G = (V, E)
- Weight w(e) for edge e
- Undirected/directed

В

A

What do graphs model?

- Transportation network
 Digital image
 - Vertices: cities/locations
 - Edges: roads

- - Vertices: pixels
 - Edges: same objects
- Communication network
 Large software
 - Vertices: computers/switches
 - Edges: cable links
- Social network
 - Vertices: people
 - Edges: social connection

- Vertices: modules
- Edges: dependencies

Representation

- Adjacency list
- Space: O(V+E)
- List neighbors: O(degree)
- Check edge existence: O(degree)

Representation

- Adjacency matrix
- Space: O(V²)
- List neighbors: O(V)
- Check edge existence: O(1)

	Α	В	С	D	E
А	0	1	1	1	0
В	1	0	0	1	1
С	1	0	0	1	1
D	1	1	1	0	1
E	0	1	1	1	0

Path

- Path: sequence of nodes $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for all i=1, ...,k-1
- Simple path: each vertex appears at most once
- Cycle: path with v₁=v_k and k > 1, each edge appears at most once
- Simple cycle: vertices v₁, v₂, ..., v_{k-1} are distinct

$$v_1 - v_2 - v_k$$

Tree

- u & v are **connected** if there is a path from u to v
- Connected graph: for any vertices u & v, there is a path from u to v

С

E

D

- Tree: connected graph with no cycles
- Tree on n nodes has n-1 edges

Cut

Cut induced by subset S ⊂ V is the set of edges with exactly one end point in S

(Depth-First) Search in Graph

- Search(vertex v)
 - $explored[v] \leftarrow 1$
 - For $(v, w) \in E$
 - If explored[w] = 0 then
 - $parent[w] \leftarrow v$
 - search(w)
 - post-visit(v)

V

Search(v) explores all vertices reachable from v

Connected components in undirected graphs

- Search(v) explores all vertices reachable from v
- These are exactly vertices in v's connected component
- DFS(G = (V,E))
 - For each $v \in V$
 - $explored[v] \leftarrow 0$
 - For each $v \in V$
 - If explored[v] = 0 then
 - search(v) // explores a new connected component

Search tree in directed graph

- The parent-child edges found by search() form a (directed) tree
- Tree edges: (v, c), (v, d), (d, e)
- (*v*, *e*): forward edge (edge from ancestor to descendant)
- (*c*, *v*): backward edge (edge from descendant to ancestor)
- (*d*, *c*): cross edge (no ancestral relation)

Exercise

 Label edges as tree/forward/backward/cross edges (assume we explore neighbors in alphabetical order from a)

(Depth-First) Search in Graph

- Search(vertex v)
 - $explored[v] \leftarrow 1$
 - For $(v, w) \in E$
 - If explored[w] = 0 then
 - $parent[w] \leftarrow v$
 - search(w)
 - post-visit(v)
- Keep global counter p initialized to 0
- In post-visit(v), increase p and set postorder[v] = p

	Vertex	Post- order
р	v	4
	С	1
	d	3
	е	2

(Depth-First) Search in Graph

- Search(vertex v)
 - $explored[v] \leftarrow 1$
 - For $(v, w) \in E$
 - If explored[w] = 0 then
 - $parent[w] \leftarrow v$
 - search(w)
 - post-visit(v)

V

 $postorder[u] < postorder[v] \leftrightarrow (u, v)$ is backward

Observations

• If $(u, v) \in E$ then $postorder[u] < postorder[v] \leftrightarrow (u, v)$ is backward

Proof:

- search(v) finishes after searches for its children finish
 - If (u,v) is tree edge then postorder[u] > postorder[v]
 - If (u,v) is forward edge then postorder[u] > postorder[v]
 - If (u,v) is backward then postorder[u] < postorder[v]
- If postorder[u] < postorder[v] then search(u) finishes before search(v).

e

- Thus, search(v) is not called by search(u)
- explored[v]=1 when running search(u) i.e. search(v) started before search(u)
- Search(v) starts before and ends after search(u)
 - Can only happen for backward edge
 - Cannot happen for cross edge