CS 4800: Algorithms \& Data

Lecture 14

February 27, 2018

Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Weight w(e) for edge e
- Undirected/directed

$$
\begin{gathered}
V=\{A, B, C, D, E\} \\
\mathrm{E}=\{(A, B),(A, C),(A, D),(B, D),(B, E),(C, D),(C, E),(D, E)\}
\end{gathered}
$$

What do graphs model?

- Transportation network • Digital image
- Vertices: cities/locations
- Edges: roads
- Vertices: pixels
- Edges: same objects
- Communication network • Large software
- Vertices: computers/switches
- Edges: cable links
- Social network
- Vertices: people
- Edges: social connection
- Vertices: modules
- Edges: dependencies

Representation

- Adjacency list
- Space: O(V+E)
- List neighbors: O(degree)
- Check edge existence: O(degree)

$\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}$
$\mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
$\mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
$\mathrm{D} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E}$
$\mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}$

Representation

- Adjacency matrix
- Space: O(V²)
- List neighbors: O(V)
- Check edge existence: O(1)

	A	B	C	D	E
A	0	1	1	1	0
B	1	0	0	1	1
C	1	0	0	1	1
D	1	1	1	0	1
E	0	1	1	1	0

Path

- Path: sequence of nodes $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $\mathrm{i}=1, \ldots, \mathrm{k}-1$
- Simple path: each vertex appears at most once
- Cycle: path with $\mathrm{v}_{1}=\mathrm{v}_{\mathrm{k}}$ and $\mathrm{k}>1$, each edge appears at most once
- Simple cycle: vertices $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}$ are distinct

Tree

- $\mathbf{u} \& \mathrm{v}$ are connected if there is a path from \mathbf{u} to v
- Connected graph: for any vertices u \& v, there is a path from u to v
- Tree: connected graph with no cycles
- Tree on n nodes has n-1 edges

Cut

- Cut induced by subset $S \subset V$ is the set of edges with exactly one end point in S

(Depth-First) Search in Graph

- Search(vertex v)
- explored $[v] \leftarrow 1$
- For $(v, w) \in E$
- If $\operatorname{explored}[w]=0$ then
- parent $[w] \leftarrow v$
- search(w)
- post-visit(v)
- Search(v) explores all vertices reachable from v

Connected components in undirected graphs

- Search(v) explores all vertices reachable from v
- These are exactly vertices in v's connected component
- DFS(G = (V,E))
- For each $v \in V$
- explored $[v] \leftarrow 0$
- For each $v \in V$
- If explored $[v]=0$ then
- $\operatorname{search(v)~//~explores~a~new~connected~}$ component

Search tree in directed graph

- The parent-child edges found by search() form a (directed) tree
- Tree edges: $(v, c),(v, d),(d, e)$
- (v, e) : forward edge (edge from ancestor to descendant)
- (c, v) : backward edge (edge from descendant to ancestor)

- (d, c) : cross edge (no ancestral relation)

Exercise

- Label edges as tree/forward/backward/cross edges (assume we explore neighbors in alphabetical order from a)

(Depth-First) Search in Graph

- Search(vertex v)
- explored $[v] \leftarrow 1$
- For $(v, w) \in E$
- If explored $[w]=0$ then
- parent $[w] \leftarrow v$
- search(w)
- post-visit(v)
- Keep global counter p initialized to 0
- In post-visit(v), increase p and set postorder[v] = p

Vertex	Post- order
v	4
c	1
d	3
e	2

Exercise

- Compute post-order array

(Depth-First) Search in Graph

- Search(vertex v)
- explored $[v] \leftarrow 1$
- For $(v, w) \in E$
- If explored $[w]=0$ then
- parent $[w] \leftarrow v$
- search(w)
- post-visit(v)

Observations

- If $(u, v) \in E$ then

Search(vertex v)
explored $[v] \leftarrow 1$
For $(v, w) \in E$
If explored $[w]=0$ then parent $[w] \leftarrow v$ search(w)
post-visit(v) postorder $[u]<$ postorder $[v] \leftrightarrow(u, v)$ is backward

Observations

- If $(u, v) \in E$ then postorder $[u]<$ postorder $[v] \leftrightarrow(u, v)$ is backward
Proof:
- search(v) finishes after searches for its children finish
- If (u, v) is tree edge then postorder[u] > postorder[v]
- If (u, v) is forward edge then postorder[u] > postorder[v]
- If (u, v) is backward then postorder[u] < postorder[v]
- If postorder $[u]<\operatorname{postorder}[v]$ then search(u) finishes before search(v).
- Thus, search(v) is not called by search(u)
- explored[v]=1 when running search(u) i.e. search(v) started before search(u)
- Search(v) starts before and ends after search(u)
- Can only happen for backward edge
- Cannot happen for cross edge

