CS 4800: Algorithms &
Data

Lecture 14
February 27, 2018

Graphs

* G=(V, E)
* Weight w(e) for edge e
* Undirected/directed

V = {A,B,C,D,E}
E= {(4,B),(4,0),(4,D),(B,D),(B,E),(C,D),(C,E),(D,E)}

What do graphs model?

* Transportation network e Digital image
* \ertices: cities/locations * Vertices: pixels
* Edges: roads * Edges: same objects

e Communication network* Large software

e \ertices: e Vertices: modules
ComputerS/SWitCheS ° Edges: dependencies

* Edges: cable links
* Social network

* Vertices: people
* Edges: social connection

Representation

* Adjacency list
e Space: O(V+E)
* List neighbors: O(degree)

e Check edge existence: O(degree)

™ > > > W
vy b
O W O O O
vy oy 4
O o m m O

Representation

e Adjacency matrix

 Space: O(V?)

e List neighbors: O(V)

* Check edge existence: O(1)

Path

e Path: sequence of nodes vy, v,, ..., v, such that
(v;,v;4+1) € E foralli=1, ... k-1

© Simple path: each vertex appears at most once

© Cycle: path with vi=v, and k > 1, each edge appears
at most once

© Simpie cyclervertices vy, V,, ..., V4 are distinct

\ Vo =— 7 ——~~~ Vi

Tree

e u&vare connected if there is a path fromutov

© Connected graph: for any vertices u & v, there is a
path fromutov

* Tree: connected graph with no cycles

* Tree on n nodes has n-1 edges

Cut

* Cutinduced by subset S c V is the set of edges
with exactly one end pointin S

- ~
- ~

(Depth-First) Search in Graph

X

» Search(vertex v)
* explored|v] « 1
* For (v,w) EE
* If explored|[w]| = 0 then
* parent|w] « v
e search(w)
* post-visit(v)

e Search(v) explores all vertices reachable from v

Connected components in
undirected graphs

e Search(v) explores all vertices reachable from v

* These are exactly vertices in v's connected component

* DFS(G = (V,E))
* Foreachv eV
* explored|v] « 0
* Foreachv eV
* If explored|v] = 0 then

* search(v) // explores a new connected
component

Search tree in directed graph

* The parent-child edges found by search() form a
(directed) tree

* Tree edges: (v, c), (v,d), (d, e)

* (v, e): forward edge (edge from
ancestor to descendant)

* (¢, v): backward edge (edge from
descendant to ancestor)

* (d, c): cross edge (no ancestral relation)

Exercise

 Label edges as tree/forward/backward/cross edges
(assume we explore neighbors in alphabetical order

from a)
tree ”

‘ tree

back forward back tree

tree

(Depth-First) Search in Graph

» Search(vertex v)
* explored|v] « 1
* For(v,w) EE
* If explored|[w]| = 0 then
* parent|w]| < v
e search(w)
e post-visit(v)

» Keep global counter p initialized to O

* |In post-visit(v), increase p and set postorder[v] = p

Search(vertex v)

] explored|v] « 1

Exercise For (v, w) €

If explored[w] = 0 then
parent|w] < v
search(w)

* Compute post-order array post-visit(v)

tree
o™ ®& ™ o @

tree

Nk 8

back % forward forward back tree J
back 5

7N ;

‘ Cross ‘u tree ‘ 6
1

2

3

(Depth-First) Search in Graph

AP

e Search(vertex v)
* explored|v] « 1
* For (v,w) EE
* If explored|[w]| = 0 then
* parent|w] « v
e search(w)
* post-visit(v)

v Vv v v v Vv Vv
C d d d
e

Search(vertex v)

Observations explored[v] « 1

For (v,w) € E
If explored[w] = 0 then
parent|w] < v
search(w)

* If (u,v) € E then post-visit(v)
postorder|u] < postorder|v] & (u,v) is backward

‘ tree ‘ tree

tree

W °

back LE forward forward back tree !

back 2

/\ 4

© cross ‘u tree L 6
6 l 2 3

1

2

3

Observations

* If (u,v) € E then G

postorder|u] < postorder|v] & (u,v) is backward
Proof:

» search(v) finishes after searches for its children finish
e If (u,v) is tree edge then postorder[u] > postorder|[v]
e If (u,v) is forward edge then postorder[u] > postorder[v]
* If (u,v) is backward then postorder[u] < postorder[v]

If postorder|u] < postorder|[v] then search(u) finishes before search(v).

Thus, search(v) is not called by search(u)

explored[v]=1 when running search(u) i.e. search(v) started before search(u)

Search(v) starts before and ends after search(u)

* Can onli haiien for backward edie

