
CS 4800: Algorithms & 
Data

Lecture 14

February 27, 2018



Graphs

• G = (V, E)

• Weight w(e) for edge e

• Undirected/directed

A B

C D

E𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

E = { 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐴, 𝐷 , 𝐵, 𝐷 , 𝐵, 𝐸 , 𝐶, 𝐷 , 𝐶, 𝐸 , (𝐷, 𝐸)}



What do graphs model?

• Transportation network
• Vertices: cities/locations

• Edges: roads

• Communication network
• Vertices: 

computers/switches

• Edges: cable links

• Social network
• Vertices: people

• Edges: social connection

• Digital image
• Vertices: pixels

• Edges: same objects

• Large software
• Vertices: modules

• Edges: dependencies



Representation

• Adjacency list

• Space: O(V+E)

• List neighbors: O(degree)

• Check edge existence: O(degree)

A B

C D

E

A B C D

B A D E

C A D E

D A B C E

E B C D



Representation

• Adjacency matrix

• Space: O(V2)

• List neighbors: O(V)

• Check edge existence: O(1)

A B

C D

E

A B C D E

A 0 1 1 1 0

B 1 0 0 1 1

C 1 0 0 1 1

D 1 1 1 0 1

E 0 1 1 1 0



Path

• Path: sequence of nodes v1, v2, …, vk such that 
(𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all i=1, …,k-1

• Simple path: each vertex appears at most once

• Cycle: path with v1=vk and k > 1, each edge appears 
at most once 

• Simple cycle: vertices v1, v2, …, vk-1 are distinct

v1 v2 vk



Tree

• u & v are connected if there is a path from u to v

• Connected graph: for any vertices u & v, there is a 
path from u to v

• Tree: connected graph with no cycles

• Tree on n nodes has n-1 edges

A B

C D

E



Cut

• Cut induced by subset 𝑆 ⊂ 𝑉 is the set of edges 
with exactly one end point in 𝑆

A B

C D

E



(Depth-First) Search in Graph

• Search(vertex v)

• 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1

• For (𝑣, 𝑤) ∈ 𝐸

• If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then
• 𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣

• search(w)

• post-visit(v)

• Search(v) explores all vertices reachable from v

v e

c d



Connected components in 
undirected graphs
• Search(v) explores all vertices reachable from v

• These are exactly vertices in v’s connected component

• DFS(G = (V,E))

• For each 𝑣 ∈ 𝑉

• 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 0

• For each 𝑣 ∈ 𝑉

• If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] = 0 then 

• search(v) // explores a new connected 
component



Search tree in directed graph

• The parent-child edges found by search() form a 
(directed) tree

• Tree edges: (𝑣, 𝑐), (𝑣, 𝑑), (𝑑, 𝑒)

• (𝑣, 𝑒): forward edge (edge from
ancestor to descendant)

• (𝑐, 𝑣): backward edge (edge from
descendant to ancestor)

• (𝑑, 𝑐): cross edge (no ancestral relation)

v e

c d



Exercise

• Label edges as tree/forward/backward/cross edges 
(assume we explore neighbors in alphabetical order 
from a) 

a b c d

e f g h

tree tree

tree

tree

tree

tree

tree

back

back
back

forward forwardback

cross



(Depth-First) Search in Graph

• Search(vertex v)

• 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1

• For (𝑣, 𝑤) ∈ 𝐸

• If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then

• 𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣

• search(w)

• post-visit(v)

• Keep global counter p initialized to 0

• In post-visit(v), increase p and set postorder[v] = p

v e

c d

Vertex Post-
order

v 4

c 1

d 3

e 2



Exercise

• Compute post-order array

a b c d

e f g h

tree tree

tree

tree

tree

tree

tree

back

back
back

forward forwardback

cross

Vertex Post-
order

a 8

b 7

c 5

d 4

e 6

f 1

g 2

h 3

Search(vertex v)
𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1
For (𝑣, 𝑤) ∈ 𝐸

If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then
𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣
search(w)

post-visit(v)



(Depth-First) Search in Graph

• Search(vertex v)

• 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1

• For (𝑣, 𝑤) ∈ 𝐸

• If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then
• 𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣

• search(w)

• post-visit(v)

v e

c d

v v

c

v v

d

v

d

e

v

d

v



Observations

• If (𝑢, 𝑣) ∈ 𝐸 then
𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑢 < 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑣 ↔ 𝑢, 𝑣 is backward

a b c d

e f g h

tree tree

tree

tree

tree

tree

tree

back

back
back

forward forwardback

cross

Vertex Post-
order

a 8

b 7

c 5

d 4

e 6

f 1

g 2

h 3

8 7 5 4

3216

Search(vertex v)
𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑣] ← 1
For (𝑣, 𝑤) ∈ 𝐸

If 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑[𝑤] = 0 then
𝑝𝑎𝑟𝑒𝑛𝑡[𝑤] ← 𝑣
search(w)

post-visit(v)



Observations

• If (𝑢, 𝑣) ∈ 𝐸 then
𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑢 < 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑣 ↔ 𝑢, 𝑣 is backward

Proof: 

• search(v) finishes after searches for its children finish

• If (u,v) is tree edge then postorder[u] > postorder[v]

• If (u,v) is forward edge then postorder[u] > postorder[v]

• If (u,v) is backward then postorder[u] < postorder[v]

• If 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑢 < 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑣 then search(u) finishes before search(v).

• Thus, search(v) is not called by search(u)

• explored[v]=1 when running search(u) i.e. search(v) started before search(u)

• Search(v) starts before and ends after search(u)

• Can only happen for backward edge

• Cannot happen for cross edge

v

e

c d


