CS 4800: Algorithms \& Data

Lecture 13

February 23, 2018

Huffman codes

Information transmission

Once upon a time, before Internet and emails,

Texts are transmitted as electrical pulses and silence in between Long pulses (1) and short pulses (0)

Length of encoding

- Letter c occurs f_{c} times and its encoding is of length l_{c} bits
- Encoding length $=\sum_{c} f_{c} l_{c}$
- Given a text consisting of n distinct letters, find minimum length encoding

Morse code

- Encode letters as sequences of dots \& dashes (0/1)

Letter	Code
A	01
E	0
I	00
N	10
T	1

What does 01 mean? ET or A?

Prefix-free codes

- Problem with Morse code: some encoding is prefix of another
- Prefix-free code: for any two letters
 $x \neq y$, code (x) is not a prefix of code(y)

Encoding/decoding prefix-free codes

- Text: EATIN
- Encoding:
- 01101011101111
- Decoding:

- Start at root
- Go down until reaching a leaf
- get a letter
- Restart from the root

A text for compression

This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y 's, and only one z
-Lee Sallows

Prefix-free code to tree

Letter	Code
A	110
E	0
I	1110
N	1111
T	10

Build tree recursively

- Start with root
- All letters start with 0 go to the left subtree
- All letters start with 1 go to the right subtree
- Recursively build two subtrees

Binary tree to code

- Binary tree with n labeled leaves
- Left branch $\rightarrow 0$, right branch $\rightarrow 1$
- Encoding of letter c is the path from root to leaf c

Letter	Code
A	110
E	0
I	1110
N	1111
T	10

Which trees give optimal codes?

- Minimize encoding length $=\sum_{c} f_{c} l_{c}$

Optimal tree is full

Claim. In optimal tree, non-leaf nodes have 2 children.
Proof. Let T be an optimal tree. Suppose T contains u with one child v.
Remove u and move v into u 's location.

No encoding gets longer.
Encodings of leaves in subtree rooted at v get shorter.

First attempt

- Split alphabet S into S_{1}, S_{2} such that total frequency of S_{1} and S_{2} are as close as possible.
- Recurse on S_{1} and S_{2}
- Shannon-Fano codes

A counter-example

Letter	A	B	C	D	E
Frequency	32	25	20	18	5

Total freq each side: 50

Total cost: 225
Total cost: 223

Exchange argument

Claim. Let x and y be 2 least frequent characters. There is an optimal code where x and y are siblings and have the max depth of any leaf.

Proof. Let T be optimal tree with max depth d.
T is full so there are 2 sibling leaves at depth d.
Suppose they are a and b, not x and y.

Swap a and x.
Depth of x increases by D, depth of a decreases by same D.

$$
\text { New cost }=\text { old cost }-\left(f_{a}-f_{x}\right) D
$$

x, y are least frequent so $f_{a} \geq f_{x}$. Thus, New cost \leq old cost
Similarly swapping b and y also decreases cost.

Huffman codes

- Find 2 least frequent letters
- Merge them into a new letter
- Repeat

Example

Letter	A	B	C	D	E
Frequency	32	25	20	18	5

New letter DE: 23
New letter CDE: 43
New letter AB: 57

Total cost: 223

Huffman codes are optimal

- Induction via optimal substructure
- Base case: $\mathrm{n}=1$ or $\mathrm{n}=2$, optimality is trivial
- Inductive case: assume Huffman codes are optimal for $n<k$, will show it is optimal for $n=k$

Proof

Let $f_{1}, f_{2}, \ldots, f_{n}$ be letter frequencies.
Without loss of generality, assume f_{1}, f_{2} are the smallest.
By lemma, some optimal tree has 1 and 2 as siblings.
Thus, focus only trees with 1 and 2 as siblings.
Let $f_{n+1}=f_{1}+f_{2}$.

Let T' be Huffman code tree for $f_{3}, \ldots, f_{n}, f_{n+1}$.
By induction, T^{\prime} is optimal.
To obtain T, replace the leaf labeled $\mathrm{n}+1$ with an internal node with two children, 1 and 2.

Need to show T is optimal for frequencies $f_{1}, f_{2}, \ldots, f_{n}$.

Proof

Let depth(i$)=$ depth of leaf i in either T or T^{\prime}

$$
\begin{aligned}
\operatorname{cost}(T) & =\sum_{i=1}^{n} f_{i} \cdot \operatorname{depth}(i) \\
& =\sum_{i=3}^{n} f_{i} \cdot \operatorname{depth}(i)+f_{1} \cdot \operatorname{depth}(1)+f_{2} \cdot \operatorname{depth}(2) \\
& =\sum_{i=3}^{n} f_{i} \cdot \operatorname{depth}(i)+\left(f_{1}+f_{2}\right) \cdot(1+\operatorname{depth}(n+1)) \\
& =\sum_{i=3}^{n} f_{i} \cdot \operatorname{depth}(i)+\left(f_{1}+f_{2}\right) \cdot \operatorname{depth}(n+1)+f_{1}+f_{2} \\
& =\sum_{i=3}^{n} f_{i} \cdot \operatorname{depth}(i)+f_{n+1} \cdot \operatorname{depth}(n+1)+f_{1}+f_{2} \\
& =\operatorname{cost}\left(T^{\prime}\right)+f_{1}+f_{2}
\end{aligned}
$$

$f_{1}+f_{2}$ is fixed so minimizing $\operatorname{cost}(T)$ is equivalent to minimizing $\operatorname{cost}\left(T^{\prime}\right)$.
T^{\prime} is optimal so T is also optimal.

Food for thought

- Take a large text file
- Encode using Huffman code and e.g. zip format
- Compare the sizes
- Usually zip is smaller, why can this happen given that Huffman codes are optimal?

