CS 4800: Algorithms & Data Lecture 13

February 23, 2018

Huffman codes

Information transmission

Once upon a time, before Internet and emails,

Texts are transmitted as electrical pulses and silence in between Long pulses (1) and short pulses (0)

Length of encoding

- Letter c occurs f_{c} times and its encoding is of length I_{c} bits
- Encoding length= $\sum_{c} f_{c} l_{c}$
- Given a text consisting of n distinct letters, find minimum length encoding

Morse code

• Encode letters as sequences of dots & dashes (0/1)

Letter	Code
А	01
E	0
I	00
Ν	10
Т	1

What does 01 mean? ET or A?

Prefix-free codes

- Problem with Morse code: some encoding is prefix of another
- Prefix-free code: for any two letters
 x ≠ y, code(x) is not a prefix of code(y)

Encoding/decoding prefix-free codes

- Text: EATIN
- Encoding:
 - 01101011101111
- Decoding:
 - Start at root
 - Go down until reaching a leaf
 - get a letter
 - Restart from the root

A text for compression

This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y's, and only one z

-Lee Sallows

Prefix-free code to tree

Letter	Code
А	110
E	0
1	1110
Ν	1111
т	10

Build tree recursively

- Start with root
- All letters start with 0 go to the left subtree
- All letters start with 1 go to the right subtree
- Recursively build two subtrees

Binary tree to code

- Binary tree with n labeled leaves
- Left branch $\rightarrow 0$, right branch $\rightarrow 1$
- Encoding of letter c is the path from root to leaf c

0	1		
E 🖌	0	1	
	т		
	A	0	1
			N

Letter	Code
А	110
E	0
1	1110
Ν	1111
т	10

Which trees give optimal codes?

• Minimize encoding length= $\sum_{c} f_{c} l_{c}$

Optimal tree is full

Claim. In optimal tree, non-leaf nodes have 2 children.

Proof. Let T be an optimal tree. Suppose T contains u with one child v.

Remove u and move v into u's location.

No encoding gets longer.

Encodings of leaves in subtree rooted at v get shorter.

First attempt

- Split alphabet S into S₁, S₂ such that total frequency of S₁ and S₂ are as close as possible.
- Recurse on S₁ and S₂
- Shannon-Fano codes

A counter-example

Total freq each side: 50

Total cost: 225

Total cost: 223

Exchange argument

Claim. Let x and y be 2 least frequent characters. There is an optimal code where x and y are siblings and have the max depth of any leaf.

b

Proof. Let T be optimal tree with max depth d.

T is full so there are 2 sibling leaves at depth d.

Suppose they are a and b, not x and y.

Swap a and x.

Depth of x increases by D, depth of a decreases by same D.

New cost = old cost - $(f_a - f_x)D$ x,y are least frequent so $f_a \ge f_x$. Thus, New cost \le old cost Similarly swapping b and y also decreases cost.

Huffman codes

- Find 2 least frequent letters
- Merge them into a new letter
- Repeat

Example

Letter	Α	В	С	D	E
Frequency	32	25	20	18	5

New letter DE: 23 New letter CDE: 43 New letter AB: 57

Total cost: 223

Huffman codes are optimal

- Induction via optimal substructure
- Base case: n=1 or n=2, optimality is trivial
- Inductive case: assume Huffman codes are optimal for n<k, will show it is optimal for n=k

Proof Let $f_1, f_2, ..., f_n$ be letter frequencies. Without loss of generality, assume f_1, f_2 are the smallest. By lemma, some optimal tree has 1 and 2 as siblings.

Thus, focus only trees with 1 and 2 as siblings.

Let $f_{n+1} = f_1 + f_2$.

Let T' be Huffman code tree for $f_3, ..., f_n, f_{n+1}$.

By induction, T' is optimal.

To obtain T, replace the leaf labeled n+1 with an internal node with two children, 1 and 2.

Need to show T is optimal for frequencies $f_1, f_2, ..., f_n$.

Proof

Let depth(i) = depth of leaf i in either T or T' $cost(T) = \sum_{i=1}^{n} f_i \cdot depth(i)$ $= \sum_{i=3}^{n} f_i \cdot depth(i) + f_1 \cdot depth(1) + f_2 \cdot depth(2)$ $= \sum_{i=3}^{n} f_{i} \cdot depth(i) + (f_{1} + f_{2}) \cdot (1 + depth(n+1))$ $= \overline{\sum_{i=3}^{n} f_i \cdot depth(i) + (f_1 + f_2) \cdot depth(n+1) + f_1 + f_2}$ $= \sum_{i=3}^{n} f_i \cdot depth(i) + f_{n+1} \cdot depth(n+1) + f_1 + f_2$ $= cost(T') + f_1 + f_2$

 $f_1 + f_2$ is fixed so minimizing cost(T) is equivalent to minimizing cost(T'). T' is optimal so T is also optimal.

Food for thought

- Take a large text file
- Encode using Huffman code and e.g. zip format
- Compare the sizes
- Usually zip is smaller, why can this happen given that Huffman codes are optimal?