CS 4800: Algorithms \& Data

Lecture 12

February 20, 2018

Problem statement

- n activities
- Start times : $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$
- Finish times: $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ (sorted)
- Find largest subset of activities that are compatible

Dynamic Programming

- Best(i): Maximum \# compatible activities finishing by f_{i}
- Optimal substructure: consider activities comprising Best(i).

- Claim. The prefix is optimal.

Recursive relation

Not pick i

- Either pick activity i or not
- $\operatorname{Best}(i)=\max \left\{\begin{array}{c}\operatorname{Best}(i-1) \\ 1+\operatorname{Best}(j) \text { where } j=\max k s . t f_{k} \leq s_{i}\end{array}\right.$

Pick i

Dynamic Programming

- $\operatorname{Best}(0) \leftarrow 0$
- $f_{0} \leftarrow-\infty$
- For i from 1 to n
- Use binary search to find max j s.t. $f_{j} \leq s_{i}$
- Best(i) $=\max (\operatorname{Best}(\mathrm{i}-1), 1+\operatorname{Best}(\mathrm{j}))$

Various greedy rules

- Pick shortest activity
- Pick activity with fewest conflicts
$\vec{\longrightarrow} \longrightarrow \longrightarrow$
- Pick activity first to start
- Pick activity first to finish

Exchange argument

Claim: First activity to finish is part of some optimal solution.
Proof.
Consider an optimal solution X that does not include activity 1. Let i be the first activity to finish in X .
Because act. 1 finishes before i, act. 1 is not in conflict with any activity in $X \backslash\{i\}$
Therefore, $\mathrm{X}^{\prime}=X \backslash\{i\} \cup\{1\}$ is also conflict-free.
X^{\prime} has the same size of X and thus, it is also optimal.

Greedy algorithm

Find first activity to finish. Add to solution. Remove conflicting activities.
Repeat.

Greedy algorithm

- count $\leftarrow 1$ // number of activities we pick
- $X[$ count $] \leftarrow 1 \quad / / X[$ [.]: IDs of activities we pick
- For ifrom 2 to n
- If $S[i] \geq F[X[$ count $]]$
- count \leftarrow count +1
- $X[$ count $] \leftarrow i$
- Return $X[1$... count $]$

Greedy is optimal

Induction hypothesis: Greedy is optimal for any instance of size n.
Base case: Greedy is optimal for $n=1$
Inductive case: Assume Greedy is optimal for $n<k$. Will prove for $n=k$.
By Claim, activity 1 belongs to some optimal solution. Thus, the best solution that includes 1 is also optimal.

Greedy picks 1 and then perform greedy on the set of activities not conflicting with 1 (a sub-instance of size $<k$).

By induction, greedy picks an optimal solution for the subinstance i.e. it finds the best solution containing 1.

Therefore, greedy also finds an optimal solution for $n=k$.

Huffman codes

Information transmission

Once upon a time, before Internet and emails,

Texts are transmitted as electrical pulses and silence in between
Long pulses (1) and short pulses (0)

Length of encoding

- Letter c occurs f_{c} times and its encoding is of length I_{c} bits
- Encoding length $=\sum_{c} f_{c} l_{c}$
- Given a text consisting of n distinct letters, find minimum length encoding

Morse code

- Encode letters as sequences of dots \& dashes (0/1)

Letter	Code
A	01
E	0
I	00
N	10
T	1

What does 01 mean? ET or A?

Prefix-free codes

- Problem with Morse code: some encoding is prefix of another
- Prefix-free code: for any two letters
 $x \neq y$, code (x) is not a prefix of code(y)

Encoding/decoding prefix-free codes

- Text: EATIN
- Encoding:
- 01101011101111
- Decoding:

- Start at root
- Go down until reaching a leaf
- get a letter
- Restart from the root

A text for compression

This sentence contains three a's, three c's, two d's, twenty-six e's, five f's, three g's, eight h's, thirteen i's, two l's, sixteen n's, nine o's, six r's, twenty-seven s's, twenty-two t's, two u's, five v's, eight w's, four x's, five y 's, and only one z

