# CS 4800: Algorithms \& Data 

## Lecture 11

February 16, 2018

## Comparing genomes

- Given 2 strings/genes
- $X=x_{1} x_{2} \ldots x_{m}$
- $Y=y_{1} y_{2} \cdots y_{n}$
- Find alignment of $X$ and $Y$ with min cost
- Each position in $X$ or $Y$ that is not matched cost 1
- For each pair of letters p, q, matching p and q incurs mismatch cost of $a_{p, q}$

| S | T | E | P | - |
| :---: | :---: | :---: | :---: | :---: |
| - | T | 0 | - | S |
| Cost 1 |  | Cost $\mathrm{a}_{\mathrm{e}, 0}$ | Cost 1 | Cost 1 |

## Subproblems

- Best( $\mathrm{i}, \mathrm{j}$ ): minimum alignment cost for 2 strings $\mathrm{x}_{\mathrm{i}}$, $\ldots, x_{m}$ and $y_{j}, \ldots, y_{n}$


## Guess to align $x[i:]$ and $y[j:]$



- How to align first characters?
- 3 possibilities:
- Match $x_{i}$ and $y_{j}$
- $x_{i}$ not matched
- $y_{j}$ not matched


## Recursive relation

$-\operatorname{Best}(i, j)=\min \left\{\begin{array}{c}a_{x_{i} y_{j}}+\operatorname{Best}(i+1, j+1) \\ 1+\operatorname{Best}(i+1, j) \\ 1+\operatorname{Best}(i, j+1)\end{array}\right.$

- Evaluation order: from large i to small i, from large j to small j


## Whole algorithm

- Initialize
- $\operatorname{Best}(m+1, n+1)=0 \quad / /$ aligning 2 empty strings
- $\operatorname{Best}(m+1, j)=n-j+1$ for $j$ from 1 to $n$
- $\operatorname{Best}(i, n+1)=m-i+1$ for i from 1 to $m$
- For i from $m$ down to 1
- For j from n down to 1

$$
\cdot \operatorname{Best}(i, j)=\min \left\{\begin{array}{c}
a_{x_{i}, y_{j}}+\operatorname{Best}(i+1, j+1) \\
1+\operatorname{Best}(i+1, j) \\
1+\operatorname{Best}(i, j+1)
\end{array}\right.
$$

- Return Best(1,1)


## Greedy algorithms

Files on tape

## Tape storage

- $n$ files of lengths $L_{1}, L_{2}, \ldots, L_{n}$
- To access a file on tape, need to scan pass all previous files
- Want an ordering to store the files to minimize then time to access a random file


## Precise objective

- Say the file are stored according to permutation $\pi$

- Time to access the i-th file is $\sum_{j=1}^{i} L_{\pi(j)}$
- Expected accessing time of a random file is

$$
\operatorname{cost}(\pi)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{i} L_{\pi(j)}
$$

## Example

| File 1 | File 2 | File 3 |
| :--- | :--- | :--- |


| 10 | 5 | 15 |
| :--- | :--- | :--- |

- Time to access file 1: 10
- Time to access file 2: 15
- Time to access file 3: 30
- Expected accessing time: $\frac{1}{3}(10+15+30)=18.33$


## Better ordering

| File 2 | File 1 | File 3 |
| :---: | :---: | :---: |
| 5 | 10 | 15 |

- Swap files 1 and 2
- Time to access file 2: 5
- Time to access file 1: 15
- Time to access file 3: 30
- Expected accessing time: $\frac{1}{3}(5+15+30)=16.67$


## Greedy strategy

- Order the files in non-decreasing sizes


## Exchange argument

Claim. $\operatorname{cost}(\pi)$ is minimized when $L_{a} \leq L_{b}$ for all pairs of consecutive files a and b in the ordering.

## Proof.

Suppose $L_{a}>L_{b}$ for some consecutive files $a$ followed by $b$.
If swap $a$ and $b$,

- Cost of accessing $a$ increase by $L_{b}$
- Cost of accessing $b$ decrease by $L_{a}$

Overall, average accessing cost change by $\left(L_{b}-L_{a}\right) / n$
$\mathrm{L}_{\mathrm{b}}<\mathrm{L}_{\mathrm{a}}$ so the average accessing cost decreases.
Thus, can improve accessing time whenever there is a consecutive pair with decreasing sizes

## Non-uniform frequencies

- File $i$ is accessed $F_{i}$ times
- Want to minimize total access time

$$
\operatorname{cost}(\pi)=\sum_{i=1}^{n}\left(F_{\pi(i)} \sum_{j=1}^{i} L_{\pi(j)}\right)
$$

## Example

| File 1 | File 2 | File 3 |
| :---: | :---: | :---: |
| size: 5 | size: 2 | size: 8 |
| freq: 2 | freq: 1 | freq: 5 |

- Time to access file 1: 5
- Time to access file 2: 7
- Time to access file 3: 15
- Total accessing time: $2 \cdot 5+1 \cdot 7+5 \cdot 15=92$


## Better ordering

| File 3 | File 2 | File 1 |
| :--- | :---: | :---: |
| size: 8 | size: 2 | size: 5 |
| freq: 5 | freq: 1 | freq: 2 |

- Time to access file 3: 8
- Time to access file 2: 10
- Time to access file 1: 15
- Total accessing time: $5 \cdot 8+1 \cdot 10+2 \cdot 15=80$


## Greedy algorithm

- Sort the files by the ratio Length/Freq.


## Exchange argument

Claim. $\cos t(\pi)$ is minimized when $L_{a} / F_{a} \leq L_{b} / F_{b}$ for all consecutive pair of files a followed by b.

Proof.
Suppose $\frac{L_{a}}{F_{a}}>\frac{L_{b}}{F_{b}}$ for some consecutive files a followed by b .
If swap a and b,

- Cost of accessing a increase by $L_{b}$
- Cost of accessing b decrease by $L_{a}$

Overall, average accessing cost change by

$\frac{L_{a}}{n}>\frac{L_{b}}{n}$ so the average accessing cost decreases.
Thus, can improve accessing time whenever there is an out of order pair.

Scheduling

| Movie | Start | End |
| :--- | :--- | :--- |
| Blair Witch | $10: 30$ | $12: 00$ |
| Bridget Jones's Baby | $10: 45$ | $12: 45$ |
| Deepwater Horizon | $10: 15$ | $12: 10$ |
| Masterminds | $12: 30$ | $2: 00$ |
| Miss Peregrine's | $1: 15$ | $3: 20$ |

## Problem statement

- n activities
- Start times : $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$
- Finish times: $f_{1}, f_{2}, \ldots, f_{n}$
- Find largest subset of activities that are compatible



## Problem statement

- n activities
- Start times : $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$
- Finish times: $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ (sorted)
- Find largest subset of activities that are compatible



## Dynamic Programming

- Best(i): Maximum \# compatible activities finishing by $f_{i}$
- Optimal substructure: consider activities comprising Best(i) (e.g. best(5) is $\{1,2,5\}$ )

- Claim. The prefix (e.g. \{1,2\}) is optimal choice if restricted to activities finishing before the start of last activity ( $\mathrm{s}_{5}$ ).

