CS 4800: Algorithms & Data Lecture 1

January 9, 2018

Huy L. Nguyen

- Email: hu.nguyen@northeastern.edu
- Office hours: Wednesday 2:00 4:00, WVH 358
- Research:
 - Algorithms for massive data sets ("big data")
 - Theoretical aspects of machine learning

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Software Progress Beats Moore's Law By STEVE LOHR MARCH 7, 2011 3:56 PM 21

... a study of progress over a 15-year span on a benchmark production-planning task. Over that time, the speed of completing the calculations improved by a factor of 43 million. Of the total, a factor of roughly 1,000 was attributable to faster processor speeds, according to the research by Martin Grotschel, a German scientist and mathematician. Yet a factor of 43,000 was due to improvements in the efficiency of software algorithms.

CS4800 syllabus

Course structure

- http://www.ccs.neu.edu/home/hlnguyen/cs4800/spring18
- Lectures: Tuesdays and Fridays 1:35pm 3:15pm
- Homework: problem sets posted every week (50%)
 - Math proofs
 - Programming problems
- Tests: 2 midterms (15% each)
- Final exam (20%)

Recipe for success

HLN	lecture
staff	office hour
you	reading
you	homework
you	programming assignment
you	midterms
you	final exam

Partnership!

Discussion forum

- https://piazza.com/northeastern/spring2018/cs4800
- Ask questions
- Help your peers

Homework submission

- Register at https://gradescope.com/courses/13862
- Use entry code: **9ERX47**

Topics

- Divide and conquer
- Dynamic programming
- Greedy algorithms
- Greedy in graphs
 - Minimum spanning trees
 - Shortest paths
- Shortest paths via dynamic programming
- Maximum flows, matching
- Hashing

CS4800: Algorithms and Data

[Home] [Schedule]

The schedule is tentative and subjects to change (e.g. snow days)

Date	Торіс	Reading	Problem sets
Jan 9	Introduction, induction	<u>Lecture slides</u> DPV Chapter 0 Erickson Appendix I	<u>PS0</u> out PS0 source
Jan 12	asymptotic order of growth, Karatsuba	<u>Lecture slides</u> Karatsuba: <u>Erickson 1.8</u> , <u>demo</u>	PS0 due <u>PS1</u> out <u>PS1 source</u>
Jan 16	recursion tree, mergesort	<u>Lecture slides</u> <u>Erickson Appendix II.1-3</u> Mergesort: <u>demo</u>	
Jan 19	Master theorem, change of variable	<u>Lecture slides</u> Master theorem: <u>Erickson Appendix II.3</u>	PS1 due <u>PS2</u> out <u>PS2 source</u>
Jan 23	deterministic median	<u>Lecture slides</u> <u>Erickson 1.7</u>	
		Lecture alidea	PS2 due

LaTeX

The Not So Short Introduction to $IAT_EX 2_{\varepsilon}$

Or $\square T_E X 2_{\mathcal{E}}$ in 157 minutes

by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl

Version 5.06, June 20, 2016

LaTeX

- Many editors: TeXShop, Texmaker, TeXstudio, ...
- Homework template on course website

Overleaf.com

Homework policies

- Discuss with peers (strongly encouraged!)
- Write up in your own words, acknowledge people you worked with
- Write your own codes
- Do not submit anything you cannot explain to me

Algorithms

- al-Khwārizmī (c. 780 c. 850)
- The Compendious Book on Calculation by

Completion and Balancing Algorithms

Procedures for solving linear and

quadratic equations

• Introduce decimal numbers to Western world

Fibonacci (c. 1170 – c. 1250)

- Popularize decimal positional number system
- Fibonacci numbers

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n > 1 \\ 1 & \text{if } n = 1 \\ 0 & \text{if } n = 0 \end{cases}$$

• F_n grows very quickly, $F_n \approx 2^{0.694n}$

An algorithm for computing Fibonacci numbers

Pseudocode

Python

function fib(n):
 if n = 0 then return 0
 else if n = 1 then return 1
 else return fib(n-1) + fib(n-2)

def fib(n):
 if n == 0: return 0
 elif n == 1: return 1
 else: return fib(n-1) + fib(n-2)

How fast?

Running time analysis

function fib(n):

if n = 0 then return 0 else if n = 1 then return 1 else return fib(n-1) + fib(n-2)

addition

Function call

Function call

T(n) = T(n-1) + T(n-2) + 3

T(n) is larger than F_n

Induction

- Guess: computing F_n takes more than 2^{n/2} operations
- Verify: computing F_0 , F_1 needs > $2^{1/2}$ operations
- Cannot verify all n=0,1,2,3,4,...
- How to prove for for all n?
- Induction: assume that the claim is true for all n<k, will prove it is true for n=k
- True for $n=1 \Rightarrow$ True for $n=2 \Rightarrow$ True for $n=3 \dots$
- True for all n!

An induction proof

- Claim: for all integer n, computing F_n needs at least 2^{n/2} operations
- Base case: computing F_0 , F_1 needs at least $2^{1/2}$ operations
- Inductive step: assuming claim is true for all n<k
- To compute F_k
 - Make 2 recursive calls to compute F_{k-1} and F_{k-2}
 - By assumption, these calls require $2^{(k-1)/2}$ and $2^{(k-2)/2}$ operations, respectively
 - Thus, we need at least $2^{(k-1)/2} + 2^{(k-2)/2} > 2^{k/2}$ operations

function exponential(a, n):

if n = 0 then return 1

else if n = 1 then return a

else return exponential(a, [n/2])*exponential(a, [n/2])

- What does this function compute?
- Prove that exponential(a,n) needs n-1 multiplications for n>=1

YOUR PROOF: fill in ???

- Claim: for all integer n, ???
- Base case: computing exponential(a,0) and exponential(a,1) needs ???
- Inductive step: assuming claim is true for all n<k, will show the claim is true for n=k

• ???

SAMPLE PROOF:

- Claim: for all n, computing F_n needs 2^{n/2} operations
- Base case: computing F₀, F₁ needs 2^{1/2} operations
- Inductive step: assume claim is true for all n<k, will prove it for n=k
- To compute F_k , we make 2 recursive calls to compute F_{k-1} and F_{k-2}
- By assumption, these calls require 2^{(k-1)/2} and 2^{(k-2)/2} operations, respectively
- We need $2^{(k-1)/2} + 2^{(k-2)/2} > 2^{k/2}$ operations

function exponential(a, n):

if n = 0 then return 1

else if n = 1 then return a

else return exponential(a, [n/2])*exponential(a, [n/2])

- What does this function compute?
- Prove that exponential(a,n) needs n-1 multiplications for n>=1
- Claim: for all integer n>0, exponential(a,n) needs n-1 multiplications
- Base case: computing exponential(a,1) needs 0 multiplication
- Inductive step: assuming claim is true for all n<k, will show the claim is true for n=k
- exponential(a,k) makes 2 recursive calls to exponential(a, [k/2]) and exponential(a, [k/2])
- By assumption, they require $\lfloor k/2 \rfloor 1$ and $\lfloor k/2 \rfloor 1$ multiplications
- On top of these 2 calls, we perform 1 more multiplication
- Thus, in total, we need $\left[\frac{k}{2}\right] 1 + \left[\frac{k}{2}\right] 1 + 1 = k 1$ multiplications

Why so slow?

Store intermediate results

- Create array fib[0..n]
- $fib[0] \leftarrow 0$
- $fib[1] \leftarrow 1$
- For i from 2 to n:
 - $fib[i] \leftarrow fib[i-1] + fib[i-2]$

```
Python:
fib = [0] * (n+1)
fib[0] = 0
fib[1] = 1
for i in range(2,n+1):
    fib[i] = fib[i-1] + fib[i-2]
```

- New total time: 0.000385 second!
- Speedup by 1000 fold!

Running time analysis

- Single for loop with one addition inside the loop
- Total time: n
- Inaccuracy: F_n grows quickly, each addition is not a single operation

Goal

- Formal framework for analyzing running times
- Accurate enough to describe general behaviors of algorithms
- Imprecise enough to avoid intricacy in processor types, programming languages