CS 4800: Algorithms \& Data

Lecture 1
January 9, 2018

Huy L. Nguyen

- Email: hu.nguyen@northeastern.edu
- Office hours: Wednesday 2:00-4:00, WVH 358
- Research:
- Algorithms for massive data sets ("big data")
- Theoretical aspects of machine learning

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Bits

Software Progress Beats Moore's Law
By steve Lohr march 7, 2011 3:56 PM 21
... a study of progress over a 15-year span on a benchmark production-planning task. Over that time, the speed of completing the calculations improved by a factor of 43 million. Of the total, a factor of roughly 1,000 was attributable to faster processor speeds, according to the research by Martin Grotschel, a German scientist and mathematician. Yet a factor of 43,000 was due to improvements in the efficiency of software algorithms.

CS4800 syllabus

Course structure

- http://www.ccs.neu.edu/home/hInguyen/cs4800/spring18
- Lectures: Tuesdays and Fridays 1:35pm - 3:15pm
- Homework: problem sets posted every week (50\%)
- Math proofs
- Programming problems
- Tests: 2 midterms (15\% each)
- Final exam (20\%)

Recipe for success

HLN	lecture
staff	office hour
you	reading
you	homework
you	programming assignment
you	midterms
you	final exam

Partnership!

Discussion forum

- https://piazza.com/northeastern/spring2018/cs4800
- Ask questions
- Help your peers

Homework submission

- Register at https://gradescope.com/courses/13862
- Use entry code: 9ERX47

Topics

- Divide and conquer
- Dynamic programming
- Greedy algorithms
- Greedy in graphs
- Minimum spanning trees
- Shortest paths
- Shortest paths via dynamic programming
- Maximum flows, matching
- Hashing

Grades

CS4800: Algorithms and Data

[Home] [Schedule]

The schedule is tentative and subjects to change (e.g. snow days)

Date	Topic	Reading	Problem sets
Jan 9	Introduction, induction	Lecture slides DPV Chapter 0 Erickson Appendix I	$\begin{array}{\|l\|l} \mathrm{PS} 0 & \text { out } \\ \mathrm{PSS} 0 \\ \text { source } \end{array}$
Jan 12	asymptotic order of growth, Karatsuba	Lecture slides Karatsuba: Erickson 1.8, demo	$\begin{array}{\|l\|l} \hline \text { PS0 due } \\ \text { PS1 out } \\ \hline \text { PS1 source } \\ \hline \end{array}$
Jan 16	recursion tree, mergesort	Lecture slides Erickson Appendix II.1-3 Mergesort: demo	
Jan 19	Master theorem, change of variable	Lecture slides Master theorem: Erickson Appendix II. 3	PS1 due PS2 out PS2 source
Jan 23	deterministic median	Lecture slides Erickson 1.7	
			PS2 due

LaTeX

The Not So Short Introduction to $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$

LaTeX

- Many editors: TeXShop, Texmaker, TeXstudio, ...
- Homework template on course website

TeXstudio

Overleaf.com

Homework policies

- Discuss with peers (strongly encouraged!)
- Write up in your own words, acknowledge people you worked with
- Write your own codes
- Do not submit anything you cannot explain to me

Algorithms

- al-Khwārizmī (c. 780 - c. 850)
- The Compendious Book on Calculation by Completion and Balancing Algorithms
- Proceứures for solving linear and quadratic equations
- Introduce decimal numbers to Western world

Fibonacci (c. 1170 - c. 1250)

- Popularize decimal positional number system
- Fibonacci numbers

$$
F_{n}=\left\{\begin{array}{c}
F_{n-1}+F_{n-2} \text { if } n>1 \\
1 \text { if } n=1 \\
0 \text { if } n=0
\end{array}\right.
$$

- F_{n} grows very quickly, $F_{n} \approx 2^{0.694 n}$

An algorithm for computing Fibonacci numbers

Pseudocode
function fib(n):
if $\mathrm{n}=0$ then return 0
else if $\mathrm{n}=1$ then return 1 else return fib($\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$
def fib(n):
if $\mathrm{n}==0$: return 0
elif $n==1$: return 1
else: return fib($\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$

How fast?

Running time analysis

```
function fib( n ): if \(\mathrm{n}=0\) then return 0
else if \(\mathrm{n}=1\) then return 1
else return fib(n-1) + fib( \(n-2\) )
```


$$
T(n)=T(n-1)+T(n-2)+3
$$

$\mathrm{T}(\mathrm{n})$ is larger than F_{n}

Induction

- Guess: computing F_{n} takes more than $2^{n / 2}$ operations
- Verify: computing F_{0}, F_{1} needs $>2^{1 / 2}$ operations
- Cannot verify all $n=0,1,2,3,4, \ldots$
- How to prove for for all n ?
- Induction: assume that the claim is true for all $n<k$, will prove it is true for $n=k$
- True for $n=1 \Rightarrow$ True for $n=2 \Rightarrow$ True for $n=3$...
- True for all n !

An induction proof

- Claim: for all integer n, computing F_{n} needs at least $2^{n / 2}$ operations
- Base case: computing F_{0}, F_{1} needs at least $2^{1 / 2}$ operations
- Inductive step: assuming claim is true for all $n<k$
- To compute F_{k}
- Make 2 recursive calls to compute F_{k-1} and F_{k-2}
- By assumption, these calls require $2^{(k-1) / 2}$ and $2^{(k-2) / 2}$ operations, respectively
- Thus, we need at least $2^{(k-1) / 2}+2^{(k-2) / 2}>2^{k / 2}$ operations
function exponential(a, n$)$:

$$
\begin{aligned}
& \text { if } \mathrm{n}=0 \text { then return } 1 \\
& \text { else if } \mathrm{n}=1 \text { then return a } \\
& \text { else return exponential(a, }[n / 2\rfloor)^{*} \operatorname{exponential(a,\lfloor n/2\rfloor)}
\end{aligned}
$$

- What does this function compute?
- Prove that exponential (a, n) needs $n-1$ multiplications for $n>=1$

YOUR PROOF: fill in ???

- Claim: for all integer n, ???
- Base case: computing exponential $(a, 0)$ and exponential(a,1) needs ???
- Inductive step: assuming claim is true for all $n<k$, will show the claim is true for n=k
- ???

SAMPLE PROOF:

- Claim: for all n, computing F_{n} needs $2^{n / 2}$ operations
- Base case: computing F_{0}, F_{1} needs $2^{1 / 2}$ operations
- Inductive step: assume claim is true for all $\mathrm{n}<\mathrm{k}$, will prove it for $\mathrm{n}=\mathrm{k}$
- To compute F_{k}, we make 2 recursive calls to compute F_{k-1} and F_{k-2}
- By assumption, these calls require $2^{(k-1) / 2}$ and $2^{(k-2) / 2}$ operations, respectively
- We need $2^{(k-1) / 2}+2^{(k-2) / 2}>2^{k / 2}$ operations
function exponential(a, n):
if $\mathrm{n}=0$ then return 1
else if $\mathrm{n}=1$ then return a else return exponential(a, $[n / 2\rceil)$ *exponential(a, $\lfloor n / 2\rfloor$)
- What does this function compute?
- Prove that exponential (a, n) needs $n-1$ multiplications for $n>=1$
- Claim: for all integer $n>0$, exponential(a, n) needs $n-1$ multiplications
- Base case: computing exponential(a,1) needs 0 multiplication
- Inductive step: assuming claim is true for all $n<k$, will show the claim is true for $n=k$
- exponential(a,k) makes 2 recursive calls to exponential(a, $[k / 2\rceil)$ and exponential(a, $[k / 2\rfloor)$
- By assumption, they require $[k / 2\rceil-1$ and $[k / 2\rfloor-1$ multiplications
- On top of these 2 calls, we perform 1 more multiplication
- Thus, in total, we need $\left[\frac{k}{2}\right]-1+\left\lfloor\frac{k}{2}\right\rfloor-1+1=k-1$ multiplications

Why so slow?

Store intermediate results

- Create array fib[0..n]
- fib[0] $\leftarrow 0$
- $\operatorname{fib}[1] \leftarrow 1$
- For ifrom 2 to n :
- $f i b[i] \leftarrow f i b[i-1]+f i b[i-2]$

Python:
fib $=[0]$ * $(\mathrm{n}+1)$
$\mathrm{fib}[0]=0$
fib[1] = 1
for i in range $(2, \mathrm{n}+1)$: $\mathrm{fib}[\mathrm{i}]=\mathrm{fib}[\mathrm{i}-1]+\mathrm{fib}[\mathrm{i}-2]$

- New total time: 0.000385 second!
- Speedup by 1000 fold!

Running time analysis

- Single for loop with one addition inside the loop
- Total time: n
- Inaccuracy: F_{n} grows quickly, each addition is not a single operation

Goal

- Formal framework for analyzing running times
- Accurate enough to describe general behaviors of algorithms
- Imprecise enough to avoid intricacy in processor types, programming languages

