
CS 4800: Algorithms &
Data

Lecture 1

January 9, 2018

Huy L. Nguyen

• Email: hu.nguyen@northeastern.edu

• Office hours: Wednesday 2:00 – 4:00, WVH 358

• Research:

• Algorithms for massive data sets (“big data”)

• Theoretical aspects of machine learning

… a study of progress over a 15-year span on a benchmark
production-planning task. Over that time, the speed of
completing the calculations improved by a factor of 43 million.
Of the total, a factor of roughly 1,000 was attributable to faster
processor speeds, according to the research by Martin
Grotschel, a German scientist and mathematician. Yet a factor of
43,000 was due to improvements in the efficiency of software
algorithms.

CS4800 syllabus

✅ Algorithm analysis
✅ Algorithm design

Course structure

• http://www.ccs.neu.edu/home/hlnguyen/cs4800/spring18

• Lectures: Tuesdays and Fridays 1:35pm – 3:15pm

• Homework: problem sets posted every week (50%)
• Math proofs

• Programming problems

• Tests: 2 midterms (15% each)

• Final exam (20%)

Recipe for success

lecture
office hour
reading
homework
programming assignment
midterms
final exam

HLN
staff
you
you
you

you
you

☞ Partnership!

Discussion forum

• https://piazza.com/northeastern/spring2018/cs4800

• Ask questions

• Help your peers

Homework submission

• Register at https://gradescope.com/courses/13862

• Use entry code: 9ERX47

Topics

• Divide and conquer

• Dynamic programming

• Greedy algorithms

• Greedy in graphs
• Minimum spanning trees

• Shortest paths

• Shortest paths via dynamic programming

• Maximum flows, matching

• Hashing

A
32%

B
48%

C
19%

Grades

LaTeX

LaTeX

• Many editors: TeXShop,
Texmaker, TeXstudio, …

• Homework template on
course website

TeXstudio

Overleaf.com

Homework policies

• Discuss with peers (strongly encouraged!)

• Write up in your own words, acknowledge people
you worked with

• Write your own codes

• Do not submit anything you cannot explain to me

Algorithms

• al-Khwārizmī (c. 780 – c. 850)

• The Compendious Book on Calculation by

Completion and Balancing

• Procedures for solving linear and

quadratic equations

• Introduce decimal numbers to Western world

Algorithms

Fibonacci (c. 1170 – c. 1250)

• Popularize decimal positional number
system

• Fibonacci numbers

• 𝐹𝑛 grows very quickly, 𝐹𝑛 ≈ 20.694𝑛

𝐹𝑛 = ቐ

𝐹𝑛−1 + 𝐹𝑛−2 𝑖𝑓 𝑛 > 1
1 𝑖𝑓 𝑛 = 1
0 𝑖𝑓 𝑛 = 0

An algorithm for computing
Fibonacci numbers

function fib(n):
if n = 0 then return 0
else if n = 1 then return 1
else return fib(n-1) + fib(n-2)

Pseudocode Python

def fib(n):
if n == 0: return 0
elif n == 1: return 1
else: return fib(n-1) + fib(n-2)

How fast?

Running time analysis

function fib(n):
if n = 0 then return 0
else if n = 1 then return 1
else return fib(n-1) + fib(n-2)

Function call Function call
addition

T(n) = T(n-1) + T(n-2) + 3

T(n) is larger than Fn

Induction

• Guess: computing Fn takes more than 2n/2

operations

• Verify: computing F0, F1 needs > 21/2 operations

• Cannot verify all n=0,1,2,3,4,…

• How to prove for for all n?

• Induction: assume that the claim is true for all n<k,
will prove it is true for n=k

• True for n=1 True for n=2 True for n=3 …

• True for all n!

An induction proof

• Claim: for all integer n, computing Fn needs at least 2n/2

operations

• Base case: computing F0, F1 needs at least 21/2 operations

• Inductive step: assuming claim is true for all n<k

• To compute Fk

• Make 2 recursive calls to compute Fk-1 and Fk-2

• By assumption, these calls require 2(k-1)/2 and 2(k-2)/2

operations, respectively

• Thus, we need at least 2(k-1)/2 + 2(k-2)/2 > 2k/2 operations

function exponential(a, n):
if n = 0 then return 1
else if n = 1 then return a
else return exponential(a, 𝑛/2)*exponential(a, 𝑛/2)

• What does this function compute?
• Prove that exponential(a,n) needs n-1 multiplications for n>=1

SAMPLE PROOF:

• Claim: for all n, computing Fn needs 2n/2

operations

• Base case: computing F0, F1 needs 21/2

operations

• Inductive step: assume claim is true for all
n<k, will prove it for n=k

• To compute Fk, we make 2 recursive calls
to compute Fk-1 and Fk-2

• By assumption, these calls require 2(k-1)/2

and 2(k-2)/2 operations, respectively

• We need 2(k-1)/2 + 2(k-2)/2 > 2k/2 operations

YOUR PROOF: fill in ???

• Claim: for all integer n, ???

• Base case: computing
exponential(a,0) and
exponential(a,1) needs ???

• Inductive step: assuming
claim is true for all n<k, will
show the claim is true for
n=k

• ???

function exponential(a, n):
if n = 0 then return 1
else if n = 1 then return a
else return exponential(a, 𝑛/2)*exponential(a, 𝑛/2)

• What does this function compute?
• Prove that exponential(a,n) needs n-1 multiplications for n>=1

• Claim: for all integer n>0, exponential(a,n) needs n-1 multiplications

• Base case: computing exponential(a,1) needs 0 multiplication

• Inductive step: assuming claim is true for all n<k, will show the claim
is true for n=k

• exponential(a,k) makes 2 recursive calls to exponential(a, 𝑘/2) and
exponential(a, 𝑘/2)

• By assumption, they require 𝑘/2 − 1 and 𝑘/2 − 1 multiplications

• On top of these 2 calls, we perform 1 more multiplication

• Thus, in total, we need
𝑘

2
− 1 +

𝑘

2
− 1 + 1 = 𝑘 − 1 multiplications

Why so slow?

𝐹𝑛 = ቐ

𝐹𝑛−1 + 𝐹𝑛−2 𝑖𝑓 𝑛 > 1
1 𝑖𝑓 𝑛 = 1
0 𝑖𝑓 𝑛 = 0

Fib(10)

Fib(9)

Fib(8)Fib(8)

Fib(7) Fib(7)

Fib(6)

Fib(7)

Fib(6)

Store intermediate results

• Create array fib[0..n]
• 𝑓𝑖𝑏 0 ← 0
• 𝑓𝑖𝑏 1 ← 1
• For i from 2 to n:

• 𝑓𝑖𝑏 𝑖 ← 𝑓𝑖𝑏 𝑖 − 1 + 𝑓𝑖𝑏[𝑖 − 2]

Python:
fib = [0] * (n+1)
fib[0] = 0
fib[1] = 1
for i in range(2,n+1):

fib[i] = fib[i-1] + fib[i-2]

• New total time: 0.000385 second!

• Speedup by 1000 fold!

Running time analysis

• Single for loop with one addition inside the loop

• Total time: n

• Inaccuracy: Fn grows quickly, each addition is not a
single operation

Goal

• Formal framework for analyzing running times

• Accurate enough to describe general behaviors of
algorithms

• Imprecise enough to avoid intricacy in processor
types, programming languages

