You read about momentum, AdaGrad, RMSProp, Adam.
What challenge(s) of optimization are these methods addressing?

Avoid ‘ﬁ:»ééwy Sk & locd minima

Need adaptive learning rates

—- In some directions learning should be faster

—- in some directions learning should be slower

Ideally we could decide which directions are which and tune learning rate accordingly

Objective function may not be stationary (changes over time)
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8.3.2 Momentum

g e eyt et

designed to accelerate learning, especially in the face of high curvature, small but
consistent gradients, or noisy gradients. The momentum algorithm accumulates
an exponentially decaying moving average of past gradients and continues to move
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Figure 8.5: Momentum aims primarily to solve two problems: poor conditioning of the
Hessian matrix and variance in the stochastic gradient. Here, we illustrate how momentum
overcomes the first of these two problems. The contour lines depict a quadratic loss
function with a poorly conditioned Hessian matrix. The red path cutting across the
contours indicates the path followed by the momentum learning rule as it minimizes this
function. At each step along the way, we draw an arrow indicating the step that gradient
descent would take at that point. We can see that a poorly conditioned quadratic objective
looks like a long, narrow valley or canyon with steep sides. Momentum correctly traverses
the canyon lengthwise, while gradient steps waste time moving back and forth across the
narrow axis of the canyon. Compare also figure 4.6, which shows the behavior of gradient
descent without momentum.

in their direction. The effect of momentum is illustrated in figure 8.5.

Formally, the momentum algorithm introduces a variable v that plays the role
of velocity—it is the direction and speed at which the parameters move through
parameter space. The velocity is set to an exponentially decaying average of the
negative gradient. The name momentum derives from a physical analogy, in
which the negative gradient is a force moving a particle through parameter space,
according to Newton’s laws of motion. Momentum in physics is mass times velocity.
In the momentum learning algorithm, we assume unit mass, so the velocity vector v

A P P — ' AN



may also be regarded as the momentum ot the particle. A hyperparameter & < |U, 1)
determines how quickly the contributions of previous gradients exponentially decay.
The update rule is given by

v av — eV (i > L(f(z";0), y@)) , (8.15)
m =1
0 «— 60 +v. (8.16)
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Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate e, momentum parameter «
Require: Initial parameter 0, initial velocity v
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(M, ... (™)} with
corresponding targets y (@),
Compute gradient estimate: g <+ mlvg > L(f(z%;0),y®).
Compute velocity update: v < av — €g.
Apply update: 6 < 0 + v.
end while

The velocity v accumulates the gradient elements Vg (=& Y7 | L(f (x); 9), y® ).
The larger « is relative to €, the more previous gradients affect the current direction.
The SGD algorithm with momentum is given in algorithm 8.2.

Previously, the size of the step was simply the norm of the gradient multiplied
by the learning rate. Now, the size of the step depends on how large and how
aligned a sequence of gradients are. The step size is largest when many successive
gradients point in exactly the same direction. If the momentum algorithm always
observes gradient g, then it will accelerate in the direction of —g, until reaching a
terminal velocity where the size of each step is

ellgl|
l—«o

. (8.17)

It is thus helpful to think of the momentum hyperparameter in terms of ﬁ For
example, = 0.9 corresponds to multiplying the maximum speed by 10 relative to
the gradient descent algorithm.

Common values of a used in practice include 0.5, 0.9, and 0.99. Like the
learning rate, o may also be adapted over time. Typically it begins with a small
value and is later raised. Adapting « over time is less important than shrinking e
over time.



What is the idea behind the idea behind AdaGrad?
ez q ” —b\né
Use individual learning rates for each parameter T —— T/

Set each learning rate inversely proportional to sum of the square of previous gradients (of that
parameter)

( b]j _/(W,}c-
> At
Downweight things with large gradients Snd)

Because those will typically be directions
Of high curvature (which we want low learning

Rates) C 5
ap—
Crma '/
L.
Sparsity

- What is an example of a problem where some gradients are “sparse” (many coefficients are
zero and a few are nonzero)

Eg. Natural Language Processing.c - Consider the problem of detecting whether a review of
a product is positive or negative . Input to your classifier ( “bag of words” - each coordinate
corresponds to one word, and there is a 1 for each word in the review).
Any individual review will have very sparse features
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desirable theoretical properties. Empirically, however, for training deep neural
network models, the accumulation of squared gradients from the beginning of
training can result in a premature and excessive decrease in the effective learning

rate. AdaGrad performs well for some but not all deep learning models.

8.5.2 RMSProp

The RMSProp algorithm ( , ) modifies AdaGrad to perform better in
the nonconvex setting by changing the gradient accumulation into an exponentially
weighted moving average. AdaGrad is designed to converge rapidly when applied to
a convex function. When applied to a nonconvex function to train a neural network,
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the learning trajectory may pass through many different structures and eventually
arrive at a region that is a locally convex bowl. AdaGrad shrinks the learning rate
according to the entire history of the squared gradient and may have made the
learning rate too small before arriving at such a convex structure. RMSProp uses
an exponentially decaying average to discard history from the extreme past so that
it can converge rapidly after finding a convex bowl, as if it were an instance of the
AdaGrad algorithm initialized within that bowl.

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate
Require: Initial parameter 6
Require: Small constant ¢, perhaps 10~7, for numerical stability
Initialize gradient accumulation variable 7 = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z", ... (™)} with
corresponding targets y (@),
Compute gradient: g « = Vg ZiL(f(ac(i); 0),y").
Accumulate squared gradient: r < r+g ©®g.
Compute update: A @ <« —ﬁ; ® g. (Division and square root applied

element-wise)
Apply update: 0 < 6 + AB.
end while

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate €, decay rate p
Require: Initial parameter 6




What is the idea of RMSProp?

Use of exponential moving average.

RMS - room mean square

Method - divide the learning rate of each parameter by root mean square value of its past
gradients (computed by an exponential moving average)
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Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate €, decay rate p
Require: Initial parameter 6




Require: Small constant 0, usually 10 ”, used to stabilize division by small
numbers
Initialize accumulation variables » = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ... (™)} with
corresponding targets y ().
Compute gradient: g <« %V@ ZiL(f(a:(Z); 6),y").
Accumulate squared gradient: r < pr + (1 — p)g ® g.

Compute parameter update: A@ = —ﬁ ©g. <\/(5—1_+'r' applied element-wise)

Apply update: 0 < 0 + A@.
end while
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RMSProp is shown in its standard form in algorithm 8.5 and combined with
Nesterov momentum in algorithm 8.6. Compared to AdaGrad, the use of the
moving average introduces a new hyperparameter, p, that controls the length scale
of the moving average.

Empirically, RMSProp has been shown to be an effective and practical op-
timization algorithm for deep neural networks. It is currently one of the go-to
optimization methods being employed routinely by deep learning practitioners.

8.5.3 Adam

Adam ( , ) is yet another adaptive learning rate optimization
algorithm and is presented in algorithm 8.7. The name “Adam” derives from
the phrase “adaptive moments.” In the context of the earlier algorithms, it is
perhaps best seen as a variant on the combination of RMSProp and momentum
with a few important distinctions. First, in Adam, momentum is incorporated
directly as an estimate of the first-order moment (with exponential weighting) of
the gradient. The most straightforward way to add momentum to RMSProp is to
apply momentum to the rescaled gradients. The use of momentum in combination
with rescaling does not have a clear theoretical motivation. Second, Adam includes
bias corrections to the estimates of both the first-order moments (the momentum
term) and the (uncentered) second-order moments to account for their initialization
at the origin (see algorithm 8.7). RMSProp also incorporates an estimate of the

Algorithm 8.6 RMSProp algorithm with Nesterov momentum




What is the idea behind the Adam optimizer?

Adam adapts learning rates of each parameter in terms

Exponentially weighted average of squared gradients (for each parameter)
Has momentum (exponential moving average of gradients)

There is a bias correction term which corrects for fact that initial value of moving averages is 0
Updates with bias-corrected velocity divided by root bias corrected second moments
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Does not require stationary objective
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ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
very noisy and/or sparse gradients. The hyper-parameters have intuitive interpre-
tations and typically require little tuning. Some connections to related algorithms,
on which Adam was inspired, are discussed. We also analyze the theoretical con-
vergence properties of the algorithm and provide a regret bound on the conver-
gence rate that is comparable to the best known results under the online convex
optimization framework. Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.

1 INTRODUCTION

Stochastic gradient-based optimization is of core practical importance in many fields of science and
engineering. Many problems in these fields can be cast as the optimization of some scalar parameter-
ized objective function requiring maximization or minimization with respect to its parameters. If the
function is differentiable w.r.t. its parameters, gradient descent is a relatively efficient optimization
method, since the computation of first-order partial derivatives w.r.t. all the parameters is of the same
computational complexity as just evaluating the function. Often, objective functions are stochastic.
For example, many objective functions are composed of a sum of subfunctions evaluated at different
subsamples of data; in this case optimization can be made more efficient by taking gradient steps
w.r.t. individual subfunctions, i.e. stochastic gradient descent (SGD) or ascent. SGD proved itself
as an efficient and effective optimization method that was central in many machine learning success
stories, such as recent advances in deep learning (Deng et al., 2013; Krizhevsky et al., 2012; Hinton
& Salakhutdinov, 2006; Hinton et al., 2012a; Graves et al., 2013). Objectives may also have other
sources of noise than data subsampling, such as dropout (Hinton et al., 2012b) regularization. For
all such noisy objectives, efficient stochastic optimization techniques are required. The focus of this
paper is on the optimization of stochastic objectives with high-dimensional parameters spaces. In
these cases, higher-order optimization methods are ill-suited, and discussion in this paper will be
restricted to first-order methods.

We propose Adam, a method for efficient stochastic optimization that only requires first-order gra-
dients with little memory requirement. The method computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients; the name Adam
is derived from adaptive moment estimation. Our method is designed to combine the advantages
of two recently popular methods: AdaGrad (Duchi et al., 2011), which works well with sparse gra-
dients, and RMSProp (Tieleman & Hinton, 2012), which works well in on-line and non-stationary
settings; important connections to these and other stochastic optimization methods are clarified in
section 5. Some of Adam’s advantages are that the magnitudes of parameter updates are invariant to
rescaling of the gradient, its stepsizes are approximately bounded by the stepsize hyperparameter,
it does not require a stationary objective, it works with sparse gradients, and it naturally performs a
form of step size annealing.

*Equal contribution. Author ordering determined by coin flip over a Google Hangout.
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Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; ©® g;. Good default settings for the tested machine learning problems are o = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~8. All operations on vectors are element-wise. With 3% and 3}
we denote (31 and (35 to the power .

Require: o: Stepsize
Require: 31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 6: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
vo 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 6; not converged do
tet+1 momenbm
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep )
m¢ < P1-mi—1 + (1 — B1) - g+ (Update biased first moment estimate) /
v < B2 - vi—1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my /(1 — Bt) (Compute bias-corrected first moment estimate)
0y < vy /(1 — BE) (Compute bias-corrected second raw moment estimate)
0y < 041 — a - My /(v/T; + €) (Update parameters)
end while
return 6, (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(6) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters #. We are in-
terested in minimizing the expected value of this function, E[f(6)] w.r.t. its parameters . With
f1(0),...,, fr(0) we denote the realisations of the stochastic function at subsequent timesteps
1,...,T. The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With g; = Vy f;(6) we denote the gradient, i.e.
the vector of partial derivatives of f;, w.r.t § evaluated at timestep .

The algorithm updates exponential moving averages of the gradient (m;) and the squared gradient
(v¢) where the hyper-parameters 1, 32 € [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1% moment (the mean) and the
2" raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates 1, and ;. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:

ap =a-/1—pB5/(1—p%) and 0; < 0,1 — ay - my /(\/r + €).
2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming € = 0, the
effective step taken in parameter space at timestep ¢ is Ay = « - i /+/0;. The effective stepsize has

two upper bounds: |A¢| < a- (1 — f1)/+/1 — Bz in the case (1 — 81) > /1 — P2, and |Ay] < «
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otherwise. The first case only happens in the most severe case of sparsity: when a gradient has
been zero at all timesteps except at the current timestep. For less sparse cases, the effective stepsize
will be smaller. When (1 — 31) = /1 — 35 we have that |7, /+/0:| < 1 therefore |A;] < a. In

more common scenarios, we will have that 7, /v/7; ~ +1 since |E[g]/+/E[g?]| < 1. The effective
magnitude of the steps taken in parameter space at each timestep are approximately bounded by
the stepsize setting a, i.e., |A¢] g a. This can be understood as establishing a trust region around
the current parameter value, beyond which the current gradient estimate does not provide sufficient
information. This typically makes it relatively easy to know the right scale of « in advance. For
many machine learning models, for instance, we often know in advance that good optima are with
high probability within some set region in parameter space; it is not uncommon, for example, to
have a prior distribution over the parameters. Since « sets (an upper bound of) the magnitude of
steps in parameter space, we can often deduce the right order of magnitude of o such that optima
can be reached from 6y within some number of iterations. With a slight abuse of terminology,
we will call the ratio 7 /+/0; the signal-to-noise ratio (SN R). With a smaller SNR the effective
stepsize A; will be closer to zero. This is a desirable property, since a smaller SNR means that
there is greater uncertainty about whether the direction of 71, corresponds to the direction of the true
gradient. For example, the SNR value typically becomes closer to 0 towards an optimum, leading
to smaller effective steps in parameter space: a form of automatic annealing. The effective stepsize
A\, is also invariant to the scale of the gradients; rescaling the gradients g with factor ¢ will scale m;
with a factor ¢ and ¥; with a factor ¢, which cancel out: (c - my)/(v/c? - ;) = My /\/0;.

3 INITIALIZATION BIAS CORRECTION

As explained in section 2, Adam utilizes initialization bias correction terms. We will here derive
the term for the second moment estimate; the derivation for the first moment estimate is completely
analogous. Let g be the gradient of the stochastic objective f, and we wish to estimate its second
raw moment (uncentered variance) using an exponential moving average of the squared gradient,
with decay rate 5. Let g1, ..., gr be the gradients at subsequent timesteps, each a draw from an
underlying gradient distribution g; ~ p(g¢). Let us initialize the exponential moving average as
vo = 0 (a vector of zeros). First note that the update at timestep ¢ of the exponential moving average
vg = P2 -vs_1 + (1 — B2) - g2 (where g2 indicates the elementwise square g; © g;) can be written as
a function of the gradients at all previous timesteps:

t
ve=(1-p)> B g? )
=1

We wish to know how E[v;], the expected value of the exponential moving average at timestep ¢,
relates to the true second moment E[g?], so we can correct for the discrepancy between the two.
Taking expectations of the left-hand and right-hand sides of eq. (1):

t
Elv] =E [(1-82)Y_ By g? )
=1
t
=E[g7]- (1-B2) Y B +¢ 3)
i=1
=E[g7]- (1-85) +¢ )

where ¢ = 0 if the true second moment E[g?] is stationary; otherwise ¢ can be kept small since
the exponential decay rate 3; can (and should) be chosen such that the exponential moving average
assigns small weights to gradients too far in the past. What is left is the term (1 — £%) which is
caused by initializing the running average with zeros. In algorithm 1 we therefore divide by this
term to correct the initialization bias.

In case of sparse gradients, for a reliable estimate of the second moment one needs to average over
many gradients by chosing a small value of 32; however it is exactly this case of small 35 where a
lack of initialisation bias correction would lead to initial steps that are much larger.
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4 CONVERGENCE ANALYSIS

We analyze the convergence of Adam using the online learning framework proposed in (Zinkevich,
2003). Given an arbitrary, unknown sequence of convex cost functions f1(0), f2(6)...., fr(6). At
each time ¢, our goal is to predict the parameter 6; and evaluate it on a previously unknown cost
function f;. Since the nature of the sequence is unknown in advance, we evaluate our algorithm
using the regret, that is the sum of all the previous difference between the online prediction f;(6;)
and the best fixed point parameter f;(6*) from a feasible set X for all the previous steps. Concretely,
the regret is defined as:

T
= [f(0:) — £(67)] 5)
t=1

where §* = arg minge x Zthl f:(6). We show Adam has O(+/T') regret bound and a proof is given
in the appendix. Our result is comparable to the best known bound for this general convex online
learning problem. We also use some definitions simplify our notation, where g, e f1(6;) and gy ;
as the i™ element. We define Gi:t,i € R? as a vector that contains the i dimension of the gradients
2
theorem holds when the learning rate o is decaying at a rate of ¢~ 2 and first moment running
average coefficient 3 ; decay exponentially with ), that is typically close to 1, e.g. 1 — 1075,

Theorem 4.1. Assume that the function f, has bounded gradients, |V f,(8)]]2 < G, ||V ft( H <

over all iterations till t, g1.4; = [g1.4,92., * »g.4)- Also, we define v £

Our following

o forall € R® and distance between any 0, generated by Adam is bounded ||0
10 — Onlloo < Do for any m,n € {1,...,T}, and 51, B2 € [0,1)
and 1 = B AT, X € (0,1). Adam achieves the following guarantee, for all T > 1.

<D,
Vi

R a(l + 41)Gos - D2 Goo \/1 — 5
R(T) < m; TUT,Hr(1 A= Bl =) Z lg1: Tz||2+z TEES)E

Our Theorem 4.1 implies when the data features are sparse and bounded gradients, the sum-
mation term can be much smaller than its upper bound Zle lgrrillz << dGo VT and
Zle \/YTM << dG VT, in particular if the class of function and data features are in the form of
section 1.2 in (Duchi et al., 2011). Their results for the expected value ]E[Zle llg1.7,:||2] also apply
to Adam. In particular, the adaptive method, such as Adam and Adagrad, can achieve O(log d\/T),

an improvement over O(v/dT’) for the non-adaptive method. Decaying (1 ; towards zero is impor-
tant in our theoretical analysis and also matches previous empirical findings, e.g. (Sutskever et al.,
2013) suggests reducing the momentum coefficient in the end of training can improve convergence.

Finally, we can show the average regret of Adam converges,

Corollary 4.2. Assume that the function f, @2 < 0] <
Gwo for all € R? and distance between any 0, generated by Adam is bounded, ||0,, — 0,,||2 < D,

10m — Onlloo < Doo for any m,n € {1,...,T}. Adam achieves the following guarantee, for all
T2>1.

R(T 1
1) oL
T VT
This result can be obtained by using Theorem 4.1 and Z?:l lgr.rill2 < dGoV/T. Thus,

limy o 25 — .

)

5 RELATED WORK

Optimization methods bearing a direct relation to Adam are RMSProp (Tieleman & Hinton, 2012;
Graves, 2013) and AdaGrad (Duchi et al., 2011); these relationships are discussed below. Other
stochastic optimization methods include vSGD (Schaul et al., 2012), AdaDelta (Zeiler, 2012) and the
natural Newton method from Roux & Fitzgibbon (2010), all setting stepsizes by estimating curvature



Published as a conference paper at ICLR 2015

from first-order information. The Sum-of-Functions Optimizer (SFO) (Sohl-Dickstein et al., 2014)
is a quasi-Newton method based on minibatches, but (unlike Adam) has memory requirements linear
in the number of minibatch partitions of a dataset, which is often infeasible on memory-constrained
systems such as a GPU. Like natural gradient descent (NGD) (Amari, 1998), Adam employs a
preconditioner that adapts to the geometry of the data, since ¥; is an approximation to the diagonal
of the Fisher information matrix (Pascanu & Bengio, 2013); however, Adam’s preconditioner (like
AdaGrad’s) is more conservative in its adaption than vanilla NGD by preconditioning with the square
root of the inverse of the diagonal Fisher information matrix approximation.

RMSProp: An optimization method closely related to Adam is RMSProp (Tieleman & Hinton,
2012). A version with momentum has sometimes been used (Graves, 2013). There are a few impor-
tant differences between RMSProp with momentum and Adam: RMSProp with momentum gener-
ates its parameter updates using a momentum on the rescaled gradient, whereas Adam updates are
directly estimated using a running average of first and second moment of the gradient. RMSProp
also lacks a bias-correction term; this matters most in case of a value of 35 close to 1 (required in
case of sparse gradients), since in that case not correcting the bias leads to very large stepsizes and
often divergence, as we also empirically demonstrate in section 6.4.

AdaGrad: An algorithm that works well for sparse gradients is AdaGrad (Duchi et al., 2011). Its

basic version updates parameters as ;11 = 6, — - g¢/ Z:Il g?. Note that if we choose /33 to be

infinitesimally close to 1 from below, then limg, 1 0y = ¢! - Z§=1 g?. AdaGrad corresponds to a

version of Adam with 8; = 0, infinitesimal (1 — 2) and a replacement of « by an annealed version
;= a-t7'/2 namely 0, —a - t='/2 - my /\/limg, 1 0p = 0; — - t7Y2 g /4 /171 22:1 g =

Oy —a- gt/ 22:1 g?. Note that this direct correspondence between Adam and Adagrad does

not hold when removing the bias-correction terms; without bias correction, like in RMSProp, a (35
infinitesimally close to 1 would lead to infinitely large bias, and infinitely large parameter updates.

6 EXPERIMENTS

To empirically evaluate the proposed method, we investigated different popular machine learning
models, including logistic regression, multilayer fully connected neural networks and deep convolu-
tional neural networks. Using large models and datasets, we demonstrate Adam can efficiently solve
practical deep learning problems.

We use the same parameter initialization when comparing different optimization algorithms. The
hyper-parameters, such as learning rate and momentum, are searched over a dense grid and the
results are reported using the best hyper-parameter setting.

6.1 EXPERIMENT: LOGISTIC REGRESSION

We evaluate our proposed method on L2-regularized multi-class logistic regression using the MNIST
dataset. Logistic regression has a well-studied convex objective, making it suitable for comparison
of different optimizers without worrying about local minimum issues. The stepsize « in our logistic
regression experiments is adjusted by 1/v/¢ decay, namely oy = % that matches with our theorat-

ical prediction from section 4. The logistic regression classifies the class label directly on the 784
dimension image vectors. We compare Adam to accelerated SGD with Nesterov momentum and
Adagrad using minibatch size of 128. According to Figure 1, we found that the Adam yields similar
convergence as SGD with momentum and both converge faster than Adagrad.

As discussed in (Duchi et al., 2011), Adagrad can efficiently deal with sparse features and gradi-
ents as one of its main theoretical results whereas SGD is low at learning rare features. Adam with
1/+/t decay on its stepsize should theoratically match the performance of Adagrad. We examine the
sparse feature problem using IMDB movie review dataset from (Maas et al., 2011). We pre-process
the IMDB movie reviews into bag-of-words (BoW) feature vectors including the first 10,000 most
frequent words. The 10,000 dimension BoW feature vector for each review is highly sparse. As sug-
gested in (Wang & Manning, 2013), 50% dropout noise can be applied to the BoW features during
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Figure 1: Logistic regression training negative log likelihood on MNIST images and IMDB movie
reviews with 10,000 bag-of-words (BoW) feature vectors.

training to prevent over-fitting. In figure 1, Adagrad outperforms SGD with Nesterov momentum
by a large margin both with and without dropout noise. Adam converges as fast as Adagrad. The
empirical performance of Adam is consistent with our theoretical findings in sections 2 and 4. Sim-
ilar to Adagrad, Adam can take advantage of sparse features and obtain faster convergence rate than
normal SGD with momentum.

6.2 EXPERIMENT: MULTI-LAYER NEURAL NETWORKS

Multi-layer neural network are powerful models with non-convex objective functions. Although
our convergence analysis does not apply to non-convex problems, we empirically found that Adam
often outperforms other methods in such cases. In our experiments, we made model choices that are
consistent with previous publications in the area; a neural network model with two fully connected
hidden layers with 1000 hidden units each and ReLU activation are used for this experiment with
minibatch size of 128.

First, we study different optimizers using the standard deterministic cross-entropy objective func-
tion with Lo weight decay on the parameters to prevent over-fitting. The sum-of-functions (SFO)
method (Sohl-Dickstein et al., 2014) is a recently proposed quasi-Newton method that works with
minibatches of data and has shown good performance on optimization of multi-layer neural net-
works. We used their implementation and compared with Adam to train such models. Figure 2
shows that Adam makes faster progress in terms of both the number of iterations and wall-clock
time. Due to the cost of updating curvature information, SFO is 5-10x slower per iteration com-
pared to Adam, and has a memory requirement that is linear in the number minibatches.

Stochastic regularization methods, such as dropout, are an effective way to prevent over-fitting and
often used in practice due to their simplicity. SFO assumes deterministic subfunctions, and indeed
failed to converge on cost functions with stochastic regularization. We compare the effectiveness of
Adam to other stochastic first order methods on multi-layer neural networks trained with dropout
noise. Figure 2 shows our results; Adam shows better convergence than other methods.

6.3 EXPERIMENT: CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) with several layers of convolution, pooling and non-linear
units have shown considerable success in computer vision tasks. Unlike most fully connected neural
nets, weight sharing in CNNs results in vastly different gradients in different layers. A smaller
learning rate for the convolution layers is often used in practice when applying SGD. We show the
effectiveness of Adam in deep CNNs. Our CNN architecture has three alternating stages of 5x5
convolution filters and 3x3 max pooling with stride of 2 that are followed by a fully connected layer
of 1000 rectified linear hidden units (ReLU’s). The input image are pre-processed by whitening, and
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Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)
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Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

dropout noise is applied to the input layer and fully connected layer. The minibatch size is also set
to 128 similar to previous experiments.

Interestingly, although both Adam and Adagrad make rapid progress lowering the cost in the initial
stage of the training, shown in Figure 3 (left), Adam and SGD eventually converge considerably
faster than Adagrad for CNNs shown in Figure 3 (right). We notice the second moment estimate v,
vanishes to zeros after a few epochs and is dominated by the € in algorithm 1. The second moment
estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing
to fully connected network from Section 6.2. Whereas, reducing the minibatch variance through
the first moment is more important in CNNs and contributes to the speed-up. As a result, Adagrad
converges much slower than others in this particular experiment. Though Adam shows marginal
improvement over SGD with momentum, it adapts learning rate scale for different layers instead of
hand picking manually as in SGD.
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Figure 4: Effect of bias-correction terms (red line) versus no bias correction terms (green line)
after 10 epochs (left) and 100 epochs (right) on the loss (y-axes) when learning a Variational Auto-
Encoder (VAE) (Kingma & Welling, 2013), for different settings of stepsize « (x-axes) and hyper-
parameters (31 and 5.

6.4 EXPERIMENT: BIAS-CORRECTION TERM

We also empirically evaluate the effect of the bias correction terms explained in sections 2 and 3.
Discussed in section 5, removal of the bias correction terms results in a version of RMSProp (Tiele-
man & Hinton, 2012) with momentum. We vary the 3; and S5 when training a variational auto-
encoder (VAE) with the same architecture as in (Kingma & Welling, 2013) with a single hidden
layer with 500 hidden units with softplus nonlinearities and a 50-dimensional spherical Gaussian
latent variable. We iterated over a broad range of hyper-parameter choices, i.e. 31 € [0,0.9] and
B2 € [0.99,0.999,0.9999], and log,,(a) € [—5, ..., —1]. Values of 35 close to 1, required for robust-
ness to sparse gradients, results in larger initialization bias; therefore we expect the bias correction
term is important in such cases of slow decay, preventing an adverse effect on optimization.

In Figure 4, values (5 close to 1 indeed lead to instabilities in training when no bias correction term
was present, especially at first few epochs of the training. The best results were achieved with small
values of (1 — (5) and bias correction; this was more apparent towards the end of optimization when
gradients tends to become sparser as hidden units specialize to specific patterns. In summary, Adam
performed equal or better than RMSProp, regardless of hyper-parameter setting.

7 EXTENSIONS

7.1 ADAMAX

In Adam, the update rule for individual weights is to scale their gradients inversely proportional to a
(scaled) L2 norm of their individual current and past gradients. We can generalize the L? norm based
update rule to a L? norm based update rule. Such variants become numerically unstable for large
p. However, in the special case where we let p — oo, a surprisingly simple and stable algorithm
emerges; see algorithm 2. We’ll now derive the algorithm. Let, in case of the L? norm, the stepsize

at time ¢ be inversely proportional to vtl /p , Where:

v = Bvi_1 + (1= B5)|g:l? 6)
t
=(1-85) B gl (7)
1=1






