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Estimate parameters of a model by maximizing likelihood of the observed data









MAP - maximum a posteriori estimation - parameters have some prior distribution, data is 
collected, that changes the posterior distribution via Bayes Rule.  Seek mode of that posterior



I just choose to minimize square loss for a binary classification problem









Perhaps you get a local minimum instead of the global minimum



No, You may be doing well on training data but not on test data - overfitting








Statistical Framework for ML supervised

Assume

X y are sampled from a joint probability distribution

Training data D Hi Yi i n
are Eid samples

Test data are also Eid samples

can estimate the modellpredictor by maximum likelihoodEstimati

Results usually in an optimization problem
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minimizationf EH separablewhere

L loss function Eg try yl IJ yl
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what is MLE

What is MLE in contrast to

Is ERM guaranteed to give you a good

predictor













Good performance on test data (future i.i.d. Samples of the distribution)



Want: Minimize the expected loss under the test distribution 























Risk is expected loss































this is empirical because it uses empirical data to estimate the expectation of loss over the 
training distribution


























What property is desired in the learned predictor

What is risk

What makes F afrgng.in
lffmityil Empirical

risk minimization
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Biased toward the training data - If a group is underrepresented in training data, then 
performance on that group may be worse



The data itself could have historical biases baked in



Just because a group has a larger fraction of the data might not mean that we want 
improvements in performance on that group to balance decreases in performance of other 
smaller groups 






















































Is risk minimization biased in a cultural

sense when applied to real problems where

Xi correspond to people

Q53 What loss doyou choose and why

What hypotheses shouldyou search over






































































































Linear Regression and Square Loss
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Logistic Regression and Cross Entropy Loss
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What magnitude of a will result from solving this problem —- infinity - because that will 
increase the likelihood of the day


























Cross Entropy loss
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Cross Entropy is an asymmetric measure of the
distance between two distributions

Logistic Regression is like a simple version

of binary classification w neural nets

a

IV

T o o

O 0
nonlinear decision boundary

Note

Cross Entropy loss penalizes datapoints
of a observed category to which the model

assigns a very low probability
0

Question to ponder
Is minimizing cross Entropy loss all that

different from minimizing a square loss in
the case of logistic regression























































The search space of larger complexity models is larger

























If its too low, it underfits the data (can not represent the “true model”)




















Bias Variance Tradeoff

What class of hypotheses shouldyou search over

Standard Statistical ML story

test error
highercomplexity models
have lower bias but
higher varianceXining error

it Tatiana'ehterm

model dominates test Error
complexity

after a certain threshold

larger models are worse

why is training Error monotonically decreasing

Why is test Error initially decreasing





































< 10^3.   ..... so choose something like like 30 or 100













Help select the right level of complexity



Say to look for evidence of overfitting 














































If you have 103 data samples

how complex of a data model would

you consider

Why does understanding this tradeoff matter






































































































Bias Variance Decomposition

Consider regression model
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EDIForti IEDforxlftfEDS.nl fully
Variance of Fp X squared bias

so
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Expected squared bias Expected variance irreducible
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Standard Statistical ML story

ungerfitting overfitting

test error
highercomplexitymodels
have lower bias but
higher varianceXining error
Iif.ggIfFidbaeai triahniah'term

model dominates test Error
complexity

after a certain threshold

larger models are worse

Modern story based on Neural Nets 8

Test Error Can decrease as
test Error model complexity continues increasing

erroryyamni.it r irE ii
training error

model Phenomenon double descent
complexity

underparameterized overparametorized larger models are better
regime regime 1

Q3 Are larger models bettor
b c we have so much data that
it captures the Entire problem domain











































Choose a neural network with 10000 or 100000 parameters





















Critically parameterized:  # parameters = # data points



How many values of parameters would fit data exactly? 1.   Neural net must contort itself to fit 
the exact data.  No expectation for generalization.















there is an infinity of model parameters that fit data exactly.  Gradient descent will find one of 
them.  Would all solutions generalize well?





There are solutions that don’t generalize well.

Build them by adding poison training data




and is actually overfitting

If you have 103 data samples

how complex of a data model would

you consider

Why is being critically parameterized bad

for generalization

In the over parameterized regime
do all models with 0 training Error

generalize well

t.i ti.IT



















































Expect near perfect fitting of your training data


How is good generalization possible in the

over parameterized regime

As

set of models
that exactly fit trainingdata

why does understanding this tradeoff matter

Parameter space 
 Parameters that you find from 

running Gd from a reasonable 
initialization have small norm 
 
That has a regularizing effect 


