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What is the meaning and an example of each of the following concepts:

Targeted vs Untargeted

In targeted attacks, we desire the system to output a specific erroneous class
- Build a pair of glasses to make systems think | am Brad Pitt
In an untargeted attack, we only desire the system to be wrong

- Simply make a point about DL methods

White box vs black box vs no box

White box - have access to classifiers, models, weights, can differentiate model
If the model got leaked (self driving car company might have had a security breach)
Black box - have access to the classifiers (but not the parameters), can not differentiate
Access to an API

No box - have no access to the classifier

Imperceptible vs perceptible

Imperceptible - a human can not determine that the image was modified
Perceptible - a human can determine that the image was modified
Sticker on the stop sign

T-shirt that fools a person detector
Digital vs physical

Physical attack - you are changing the real world
Digital attach - you are changing pixels in an image

Specific vs universal
Attack a single image or a signal classifier vs attacking set of images or set of classifiers

Attack vs defense

Attack - modify the image to get a misclassification
Defense - train a network so that someone can’t modify an image to get misclassification
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Why maximize loss with respect to the true label?

Want system to misclassify the image. We trained the net to minimize loss (which did
maximimum likelihood optimization). Instead, we will maximize loss ( minimize the likelihood of
a correct classification)

Why constrain the optimization?

If we desire an imperceptible perturbation, we need to enforce it.
Without any constraint, the image may simply output garbage (which would not fool a human)

What does constraining the optimization with P_x do?
Ensures that each pixel does not change by more than epsilon.

Is this formulation targeted or untargeted?
It is untargeted. It was never provided a target class as a parameter.

Write down a formulation that is targeted/a i Eged.
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This method roughly performs projected gradient descent. Explain.

This is like one step of projected gradient descent method, but it is scaled in order to achieve a
perturbation of LAinfinity norm epsilon.

In what sense is this method non-iterative?

It is just a single formula for the adversarial example. It does not require sequential updates
(like in PGD). Consequently, it is very fast.
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Is this targeted or untargeted?

Targeted. We are given target class t. We constrain (in a soft way) the problem to output a
perturbation that gets classified as t.
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Algorithm 1 Computation of universal perturbations.

1: input: Data points X, classifier I%, desired ¢, norm of
the perturbation &, desired accuracy on perturbed sam-

ples 6.
: output: Universal perturbation vector v.
: Initialize v < 0.
: while Err(X,) <1—4§do
for each datapoint z; € X do
if k(xz; +v) = k(x;) then

sends x; + v to the decision boundary:

Av; < argmin ||r||g s.t. k(@ +v + 1) # k().

8: Update the perturbation:
v Ppe(v+ Av;).
9: end if

10: end for
11: end while
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What does it mean to project onto the |I_p ball of radius xi?

Roughly speaking, how is a universal perturbation built?
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VGG-F | CaffeNet | GoogLeNet | VGG-16 | VGG-19 | ResNet-152
VGG-F 93.7% | 71.8% 48.4% 42.1% 42.1% 47.4 %
CaffeNet 74.0% | 93.3% 47.7% 39.9% 39.9% 48.0%
GoogLeNet | 46.2% | 43.8% 78.9 % 39.2% 39.8% 45.5%
VGG-16 63.4% | 55.8% 56.5% 78.3% 73.1% 63.4%
VGG-19 64.0% | 57.2% 53.6% 73.5% 77.8% 58.0%
ResNet-152 | 46.3% | 46.3% 50.5% 47.0% 45.5% 84.0%

Table 2: Generalizability of the universal perturbations across different networks. The percentages indicate the fooling rates.
The rows indicate the architecture for which the universal perturbations is computed, and the columns indicate the architecture
for which the fooling rate is reported.
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RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
-ResNet-50 17.25 0% 0% 2% 0% 0%
-VGG-16 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(1,7) corresponds to the accuracy of the attack generated using four models except model i (row)
when evaluated over model j (column). In each row, the minus sign “—” indicates that the model
of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the
appendix (Table 14).
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