

What is the difference between these problems?

Classification with Localization:

Defining the target label y

What would the loss function be if you used cross-entropy loss for classification outputs and MSE for regression outputs?

Lubels
$$y = (P_c, b_x, b_y, b_{uy}b_h, C_i, C_s, C_s)$$

1 If do person one hat encoding of the of the operating of the object of object $\hat{y} = (\hat{P}_c, \hat{b}_x, \hat{b}_y, \hat{b}_{uy}b_h, \hat{C}_i, \hat{C}_s, \hat{C}_s)$

Classif. regression Classification $Binary CE$ MSE CE

$$C = (y, \hat{y}) = (-log(1-\hat{P}_c)) \quad \text{if } P_c = 0$$

$$-log(\hat{P}_c) \quad \text{if } P_c = 1$$

$$+ \sum_{i} -1_{C_{c-1}} log(\hat{C}_c)$$

$$+ || b_x - \hat{b}_y||^2 + ||b_s - \hat{b}_y||^2$$

$$+ || b_x - \hat{b}_y||^2 + ||b_y - \hat{b}_y||^2$$

What is the theoretical underpinning of this loss?

$$\hat{y} = (\hat{P}_{c}, \hat{b}_{x}, \hat{b}_{y}, \hat{b}_{w}, \hat{b}_{h}, \hat{c}_{i}, \hat{c}_{s}, \hat{c}_{s})$$

$$P(object) \qquad P(object is | object)$$

$$is then) \qquad P(cotoss) | present)$$

Mode (8 Given
$$X$$
, there is a pich. dist BF y

$$P(\text{class i } | X) = P_c C_i = P(\text{class i } | \text{object, } X)$$

$$\times P(\text{object } | X)$$

$$b_x | X = b_x + \varepsilon N(0.11)$$

Max Lihelihad
$$\frac{1}{2}$$

$$L(\theta) = \prod_{i} \left[\hat{\rho}_{c} \hat{c}_{1}^{2} \frac{1}{c_{1}} \hat{c}_{2}^{2} \frac{1}{c_{3}} e_{3} e_{4} e_{5} \right]^{2} \frac{1}{2} \left[\frac{1}{2} e_{5} e_{5}$$

What are some concerns about doing landmark detection as described?

- Noise in location a person wall tog

- May be ambiguity in what a landmark mean 5

How do you pass larger image fragments into the same classifier?

Turning FC layer into convolutional layers

By changing these fully connected layers into convolutional layers, what does that now allow us to do?

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Overlapping objects:

YOLO Training

Making predictions

Andrew Ng