CS 6140: Machine Learning — Fall 2021— Paul Hand

Midterm 2 Study Guide and Practice Problems
Due: Never.

Names: [Put Your Name(s) Here]

This document contains practice problems for Midterm 1. The midterm will only have 5
problems. The midterm will cover material up through and including the bias-variance
tradeoff, but not including ridge regression. Skills that may be helpful for successful
performance on the midterm include:

1.

Write down the optimization problem corresponding to MAP estimation under a
Bayesian Prior.

. Solve the optimization problem corresponding to MAP estimation, in cases where

this is possible.

. Be able to state and prove the condition for convergence of gradient descent with

a constant step size in the case of a quadratic function.

. Write down an analytical expression for the solution to least squares problems

with and without quadratic regularization terms.

Explain the behavior of the solutions to ridge regression for various values of regu-
larization parameter A, including relating the problem to overfitting, underfitting,
bias, complexity, and convexity.

. Explain the behavior of the solutions to k-nearest neighbors for regression and

classification for various values of the parameter k, including relating the problem
to overfitting, underfitting, and bias.

Compute the predictions for a k-nearest neighbor algorithm given a provided data
set.

Implement cross validation for a provided data set and model.

. Identify if a quadratic function is convex.


http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html

Question 1. Maximum A Posteriori Estimation

Suppose y; ~ N (p, 1) fori = 1...n. Suppose y has a Bayesian prior given by a Uniform[-1,1]
distribution. Given the following data, find the MAP estimate of p. .
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Question 2. Maximum A Posteriori Estimation and Logistic Regression

Consider the task of building a binary classifier. You have a training dataset {(x;, v;)}i=1..../
where x; € R? and y; € {0, 1}. Consider the statistical model where P(y =1 | x) = o(6"x),
where o is the logistic function. Write down the optimization problem that would be
solved to perform MAP estimation of 6 provided that 6 has a prior distribution where
each component 6; is independent and normally distributed Withlvariance o’
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Question 3.

(a) Show that for any matrix X € R™4, XX and X'X are positive semidefinite.
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(b) Show that A, (X'X) = 02,(X), where A, is the largest eigenvalue of X and
Omax 18 the largest singular value of X. Hint: Use a singular value decomposition
of X in order to get an eigenvalue decomposition of X'X.
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Question 4. Ridge Regression

Let X e R,y € R", A > 0 and 6 € IR?. Consider the following optimization problem
given by ridge regression:
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For the following statements, answer whether they are TRUE or FALSE and provide a
justification.

(a) Ridge regression can be viewed as logistic regression under a Bayesian perspective
with a uniform prior on the parameters 6.
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(b) Ridge regression has a unique solution if A > 0, even if X has a null space.
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Question 5. Gradient Descent

Consider gradient descent with step size a on a function f : R? — R. Let x!") be the
nth iterate of gradient descent.

(a) TRUE or FALSE?
For any function f, if & is a small enough positive number, then x") will converge
as n — oco. Provide a justification for your answer.

Response: Falbé. 1f f(S//f)(' then j/aJien!
descent 7 @y x>0 will divese b ~

(b) TRUE or FALSE? For a general function f, it is always the case that f (x(n+1)y <
f(x™). 1f it is TRUE, provide a justification. If it is FALSE, present an example
where this inequality does not hold and provide a justification.
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Question 6. k Nearest Neighbors (KNN)

(a) TRUE or FALSE? Using too small of a value of k for k-nearest neighbors would
likely lead to overfitting. Provide a justification. Response:
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(b) Describe a situation (in the context of regression) where using least squares linear
regression would likely result in a better model than using KNN.
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Question 7. Linear Regression and Cross Validation

Consider using linear regression with the following training data.
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(a) Suppose you model the response y = 6,+06, x. Using least squares linear regression,
tind the parameters 6, ;.
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(b) Using leave-one-out cross validation, estimate the test error of the predictor from
part (a). Use the square loss to measure error.

Response:

Learned held ot

Fold # 7;;: Mords | Sgvove

point loss ot holdak pant

| (0,0) yzo0t2%¥ (-1;-Y (-2t1)= |

(1, 3)
I |
2. (-1rt) ,j:‘{ﬁ;x (0,2) (.;—0),4’
(l12)
(-l y= 0+ X (l:2) (1 -2)=1
(9:7)
.o "+
S0 Gvenge OSgware loss over bhe 3 folds  is + /4 /_;
)

&




