Day 6 - Linear Regression and Logistic Regression
Agenda:

+ Linear Regression

o Examples

o |ssues to Pay Attention To with Linear Regression
+ Classification and Logistic Regression

° Training classifiers

© Evaluating classifiers

More thoughts on square capital example and whether to approach problem as
regression or classification



CS 6140: Machine Learning — Fall 2021— Paul Hand

HW 2
Due: Wednesday September 29, 2021 at 2:30 PM Eastern time via Gradescope.

Names: [Put Your Name(s) Here]

You can submit this homework either by yourself or in a group of 2. You may consult any and
all resources. You may submit your answers to this homework by directly editing this tex file
(available on the course website) or by submitting a PDF of a Jupyter or Colab notebook. When
you upload your solutions to Gradescope, make sure to tag each problem with the correct page.

Question 1. In this problem, you will fit polynomials to one-dimensional data using linear regression.

k556"1‘4 L

(a) Generate training data (x;,y;) fori =1...8 by x; ~ Uniform([0,1]), and y; = f(x;)+¢;, where
Da@\ f(x)=1+2x-2x?and ¢; ~ N'(0,02) and o = 0.1. Plot the training data and the function f.

Response:

(b) In this problem, you will find the best fit degree d polynomial for the above data for each
d between 0 and 7. Find it with least squares linear regression by minimizing the training
mean squared error (MSE)

mein % i(yi - Zekxf) (1)

using the Normal Equations. Use numpy.linalg.solve to solve the Normal Equations
instead of computing a matrix inverse. On 8 separate plots, plot the data and the best fit
degree-d polynomial.
\ua\t Response:
a
3 c\ (c) Plot the MSE with respect to the training data (training MSE) as a function of d. Which
value of d provided the lowest training MSE?

(\} (Oe Response:

¢ (d) Generate a test set of 1000 data points sampled according to the same process as in part (a).
W, Plot the MSE with respect to the test data (test MSE) as a function of 4. Which value of d
5 nl’.\ (}\ provided the lowest test MSE?

Response:

Question 2. Linear regression using gradient descent and TensorFlow


http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html
https://www.gradescope.com/courses/308434
http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html

Least Squares Formulation for Linear Regression (for a general model)
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Examples of setting up and solving linear regression
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Solving and Optimization Problem using Gradient Descent

min  £(x)
X
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Things that can go wrong: Underfitting and Overfitting
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Things that can go wrong: numerical instability
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Other topics:

What happens when there is fewer data than features?
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What happens if there are outliers in the data?
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How do you deal with categorical features?

Yo Gt &) X 1 X5 _
£ pomm () consllt

/ ;
XZ ga 0!"'”5(,4
\ )
M/féﬂ/w



Be careful about whether you want to view your problem as a prediction task



Classification and Logistic Regression

Viewing Regression and Classification as function estimation problems
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Parametric Approach: Choose a model for f with unknown parameters. Estimate the
parameters.
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Binary Classification in 2D with logistic regression
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Given this data, draw a decision boundary (curve where you would say class 1 is on one
side and class 2 is on the other side)
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Decision Boundary for Logistic Regression
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Activity:

Could you use logistic regression to build a reasonable classifier for the following data?
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Evaluating Classifiers
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Activity: Someone invents a test for a rare disease that affects 0.1% of the population.
The test has accuracy 99.9%. Are you convinced this is a good test?
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Activity: You are building a binary classifier that detects whether a pedestrian is crossing
the sidewalk within 30 feet of a self driving car. If the detection is positive, the car puts

on the breaks. Would you rather have good precision and great recall or good recall and
great precision?



There is a trade off between True Positives and False Positives, and between
True Negatives and False Negatives
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Receiver Operating Characteristic Curves
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Comparing classifiers and Area-Under-Curve (AUC)

ROC curves

| Sometimes better

Always better e

True-positive rate
True-positive rate

1 1
False-positive rate False-positive rate

Figure 5.6 The principled way to compare algorithms is to examine their ROC curves. When the
true-positive rate is greater than the false-positive rate in every situation, it’s straightforward to
declare that one algorithm is dominant in terms of its performance. If the true-positive rate is
less than the false-positive rate, the plot dips below the baseline shown by the dotted line.

Also common to plot precision-recall curves
[ 1T

Precc’slm

réeal|



