Day 18 - 10 November - K-means and Clustering
Agenda:

+ Course Project

+ Clustering

+ K-Means

+ Proof of Convergence for K-Means



CS 6140: Machine Learning — Fall 2021— Paul Hand

Project Planning
Due: We cember 15, 2021 at 11:59 PM Eastern time via Gradescope.

Names: [Put Your Name(s) Here]

For your final project, you will obtain a dataset, select multiple machine learning models,
train the models, and evaluate the performance of the models. You may elect to reproduce some
of the results from a scientific paper, but you must code up some aspect of dataset, model, or
training yourself. You may use standard Deep Learning frameworks (e.g. PyTorch, TensorFlow,
etc.). You may use code that is available on the internet as building blocks. You may run your
algorithm in a slightly different context. You must train more than one machine learning model
and compare the performance of those models. You are encouraged (but are not required to)
train models that we have not discussed in class.

You will write up a short (at most 3 pages) report detailing: the dataset you are using and
any data processing you have done, the models you are studying, the details of training the
models, and the results of the evaluation. Please use the NeurIPS Style files for your report.

You may work in groups of up to 3 people. You may work alone.

If you want some ideas of projects, here are some ideas. You do not need to select one of
these papers.

¢ Train several handwritten digit classifiers from the table at this website.
¢ Implement one of the chapters of the Mattmann book.
* Find a Kaggle dataset that you find interesting and train multiple models for it.

¢ Train a neural network to remove additive noise from images. You can construct a dataset
consisting of clean images and noisy images that you construct.

¢ Create a synthetic dataset and evaluate the k-means and k-means++ algorithms

¢ Create a synthetic high dimensional dataset and show that k nearest neighbors fails while
another classification method succeeds.

* Create a synthetic dataset and evaluate how successful cross-validation is at estimating
test error.

¢ Reproduce aspects of Figure 1 of Understanding Deep Learning Requires Rethinking
Generalization

Question 1. Project Planning

1. Provide a summary of the goal of your project. If you are replicating part of a paper,
include a link to the paper here.

Response:


http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html
https://www.gradescope.com/courses/308434
https://nips.cc/Conferences/2019/PaperInformation/StyleFiles
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

. What dataset will you use?
Response:
. What models will you train? You need to have more than one.

Response:

. What do you think will be most difficult about training the models?

Response:

. How will you evaluate the models?

Response:
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Table 3.1 Five customer features before being fed to an unsupervised learning algorithm

Customer ID Age Gender Average monthly spending ($)
1 18 M 14.67
2 21 M 15.67
3 28 M 18.02
4 27 F 34.61
5 32 F 30.66

» Customers within the same cluster are similar to each other.

= Customers in different clusters are different from each other.

%
Each cluster hos o center/ Cenkroid, which

con ack 05 o sterebye Sor the  Cluster

Table 3.3 A summary of the characteristics of the three clusters spotted by our algorithm

Cluster number % female Avg monthly spending ($) # of customers
1 18.2 20% 15.24 290
2 29.3 90% 28.15 120

3 22 40% 17.89 590




Sign of Successfel Clusteriy (in practice)

1 Are the results interpretable? In other words, are the cluster centers interpretable
as buyer personas that make logical sense? If the answer is yes, move to question 2.
2 Are the results actionable? In other words, are my clusters different enough that
I can come up with different strategies to target customers belonging to the dif-

ferent centers?

Svpervised vs  Unsypervised [ Gamm 9

Supervised Learning

Supervised

Learns a mapping
from XtoY

Labels Y

Unsupervised Learning

Features

Unsupervised
learning
algorithm

Finds similar clusters
within the data

Figure 3.6 The differences in input and output of supervised and unsupervised

algorithms
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Figure 9.1 lllustration of the K-means algorithm using the re-scaled Old Faithful data set. (a) Green points
denote the data set in a two-dimensional Euclidean space. The initial choices for centres p, and p, are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the points
assigned to the corresponding cluster. (d)—(i) show successive E and M steps through to final convergence of
the algorithm.
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k-means Clustering Algorithm

Let C° be an arbitrary clustering, and let p® = (', p?, ..., p*) be a sequence of
centres such that for &' € {1,2,... k}, p,g, is the centroid of the points in the &’-th cluster.
t <+ 0.
converged < false.
While —converged

converged < true.

forie{1,2,...,n}

C (i)  C10). pd <t

for ¥ € {1,2,...,k} A A /'/SLZG)"")
If k' # CH1(i) and [la” — pw|| < [l — perral
Ct+1( ) — K.
converged <« false.
for K € {L2..... K} Pﬁ&i’
Set puif b to be the centroid of all points 4 such that C**1(i) = <<

t+t+ 1
Return Ct, p!




Lemma 1. Consider the points z', 2%, ..., 2™, wherem > 1, and fori € {1,2,...,m}, z' e R%.

Let z = # o 2" be the mean of these points, and let z € R? be an arbitrary point in the same

(d-dimensional) space. Then
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Theorem 2. The k-means clustering algorithm converges.

Proof. Suppose that the algorithm proceeds from iteration ¢ to iteration ¢+ 1. It suffices to show
that SSE(C*!, p!™1) < SSE(C!, u'). To see why, consider that if that was true, no clustering
can be visited twice; since the number of possible clusterings is finite (™), the algorithm must
necessarily terminate. By the construction of the algorithm, we know that it terminates when
no point has a cluster centre closer than the centre of its current cluster: in other words, the

current clustering is locally optimal.
We show that SSE(C'H!, pu!t1) < SSE(C!, u!) in two steps. First, we show that

SSE(C™*!, ') < SSE(C', i), clustann y (1)

and next, we show that

SSE(Ct+1, [Lt+1) < SSE(Ct+1, ll/t) (2)

The first step follows directly from the logic of the algorithm: C* and C*! are different only if
there is a point that finds a closer cluster centre in ! than the one assigned to it by C*:

SSE(C'*, ') an — e < D 2" = mou I° = SSE(C, ).

i=1

The second step puts Lemma 1 to use:

n
SSE(C™, w1 = Y 2’ — piihy 1P
i=1
k .
-y 3 " — iy 12
k'=14ie{1,2,...n},CtH1(i)=k’ L@
)

e

k
<Y Y gl Aeana
k'=1i€{1,2,...,n},Ct+1(i)=k

n

[l — H’tCt+l(i)||2
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k-means Clustering

Shivaram Kalyanakrishnan

February 17, 2017

Abstract

We introduce the k-means clustering problem, describe the k-means clustering algorithm,
and provide a proof of convergence for the algorithm.

1 The k-means Clustering Problem

We are given a data set (x',x2,..., x"), where for i € {1,2,...,n}, x* € R%. Here d > 2 is the
dimension of the data set. We are also specified an integer £ > 2. The objective of k-means
clustering is to partition the data set into k clusters, such that each cluster is as “tight” as
possible. We define this objective more precisely.

A clustering C : {1,2,...,n} — {1,2,...,k} assigns one of k clusters to each point in
the data set. Each cluster ¥’ € {1,2,... k} is also associated with a centre p € Re. If
we take a clustering C along with the sequence p representing the centres of its & clusters—
p = (1, pa, ..., pur)—we can define “tightness” in terms of the aggregate distance between the
data points and the centres of the clusters to which they are assigned by C. If C(7) is the cluster
in {1,2,...,k} to which C assigns input point ¢, the Euclidean distance between the point and
its cluster center is |’ — kel The most common measure of the tightness of a clustering C
(along with cluster centres p) is the sum squared error (SSE), defined as

>l = pew I
=1

Other definitions of tightness may also be used, but this particular one enjoys nice mathematical
properties, as we shall shortly see.

The k-means clustering problem is the problem of finding a clustering among the set of
all clusterings, along with a sequence of cluster centres, such that the corresponding SSE is
minimal. Unfortunately, even for & = 2, this problem is NP-hard for general d and n [2]. If we
revise our aim to find a “reasonable”, rather than optimal, clustering, it turns out we can do
quite nicely by applying the k-means clustering algorithm. This algorithm is an iterative one,
which provably converges to a local minimum.

2 k-means Clustering Algorithm

Before we specify the k-means clustering algorithm, we settle one relevant matter. Recall that a
clustering algorithm must return both a clustering and a centre for each cluster. The following
lemma shows that for any fixed clustering, the SSE is minimised when the centre associated
with each cluster is the mean (or centroid) of the set of points assigned to that cluster.



Lemma 1. Consider the points z',22,...,2™, wherem > 1, and fori € {1,2,...,m}, 2 € R%,
Letz=-1 Z —1 2" be the mean of these pomts and let z € Rd be an arbitrary pomt in the same
(d- dzmenswnal} space. Then

Dol =P 2 2 -2
i=1 i=1

Proof.
m .
Dol == ZH 2 —2)+ (2 - 2)|
i=1
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The k-means clustering algorithm, shown below, is rather straightforward. We begin with
an arbitrary clustering, and in line with Lemma 1, set the cluster centres to be the means of
the points in each cluster. Thereafter, we examine each point. If it so happens that the closest
cluster centre to a point is not the centre of its current cluster, the point is shifted to the cluster
to whose centre it is closest. The change in cluster assignments now calls for a corresponding
recalculation of the cluster centres; this process iterates until convergence.

k-means Clustering Algorithm

Let C° be an arbitrary clustering, and let u® = (u',pu?, ...,u*) be a sequence of

centres such that for &' € {1,2,...,k}, u, is the centroid of the points in the k’-th cluster.
t <+ 0.
converged < false.
While —converged
converged < true.
forie{1,2,...,n}
CHH(d) « Ct( )-
for k¥ € {1,2,...,k}
I K £ CH(3) and | — ) < 12 — prorsn o |
Ct+1( ) — k.
converged <« false.
for ¥ € {1,2,...,k}
Set ut’Ll to be the centroid of all points i such that C**1(i) = £’
t+—t+1.
Return Ct, !

As per the procedure outlined above, it is entirely possible to achieve clusterings that assign
no points to some of the k clusters. In such a case, the corresponding cluster centre can be set



arbitrarily (since the mean is undefined). In practice, though, it is common to use all & clusters
effectively—for instance, one could set the centre of an empty cluster to be one of the points in
the data set, which would ensure that the cluster will not be empty in the next iteration.

It should also be noted that the choice of the initial clustering, C°, can make a significant
difference to the SSE of the final clustering obtained. Specialised initialisation strategies (such
as k-means++ [1]) are often used to good effect. It exceeds the scope of this discussion to
describe initialisation procedures in detail. Rather, we proceed to prove that regardless of the
initialisation, the algorithm will necessarily converge.

Theorem 2. The k-means clustering algorithm converges.

Proof. Suppose that the algorithm proceeds from iteration ¢ to iteration t+1. It suffices to show
that SSE(C*!, u!™!) < SSE(C?, u?). To see why, consider that if that was true, no clustering
can be visited twice; since the number of possible clusterings is finite (k™), the algorithm must
necessarily terminate. By the construction of the algorithm, we know that it terminates when
no point has a cluster centre closer than the centre of its current cluster: in other words, the
current clustering is locally optimal.

We show that SSE(C'H!, ut*l) < SSE(C?, u?) in two steps. First, we show that

SSE(C'*!, u') < SSE(C', u), (1)

and next, we show that
SSE(C!!, ) < SSE(CT, uh). (2)

The first step follows directly from the logic of the algorithm: C* and C**! are different only if
there is a point that finds a closer cluster centre in p! than the one assigned to it by C':

SSE(C**, u") Z " — Mct+1 Z)H < Z " — th(z = SSE(C', ).

The second step puts Lemma 1 to use:

n
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