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CS 6140: Machine Learning — Fall 2021— Paul Hand

Project Planning

Due: Wednesday December 15, 2021 at 11:59 PM Eastern time via Gradescope.

Names: [Put Your Name(s) Here]

For your final project, you will obtain a dataset, select multiple machine learning models,

train the models, and evaluate the performance of the models. You may elect to reproduce some

of the results from a scientific paper, but you must code up some aspect of dataset, model, or

training yourself. You may use standard Deep Learning frameworks (e.g. PyTorch, TensorFlow,

etc.). You may use code that is available on the internet as building blocks. You may run your

algorithm in a slightly different context. You must train more than one machine learning model

and compare the performance of those models. You are encouraged (but are not required to)

train models that we have not discussed in class.

You will write up a short (at most 3 pages) report detailing: the dataset you are using and

any data processing you have done, the models you are studying, the details of training the

models, and the results of the evaluation. Please use the NeurIPS Style files for your report.

You may work in groups of up to 3 people. You may work alone.

If you want some ideas of projects, here are some ideas. You do not need to select one of

these papers.

• Train several handwritten digit classifiers from the table at this website.

• Implement one of the chapters of the Mattmann book.

• Find a Kaggle dataset that you find interesting and train multiple models for it.

• Train a neural network to remove additive noise from images. You can construct a dataset

consisting of clean images and noisy images that you construct.

• Create a synthetic dataset and evaluate the k-means and k-means++ algorithms

• Create a synthetic high dimensional dataset and show that k nearest neighbors fails while

another classification method succeeds.

• Create a synthetic dataset and evaluate how successful cross-validation is at estimating

test error.

• Reproduce aspects of Figure 1 of Understanding Deep Learning Requires Rethinking

Generalization

Question 1. Project Planning

1. Provide a summary of the goal of your project. If you are replicating part of a paper,

include a link to the paper here.

Response:
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http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html
https://www.gradescope.com/courses/308434
https://nips.cc/Conferences/2019/PaperInformation/StyleFiles
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530


2. What dataset will you use?

Response:

3. What models will you train? You need to have more than one.

Response:

4. What do you think will be most difficult about training the models?

Response:

5. How will you evaluate the models?

Response:
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Can k means fail

Yes for multiple reasons
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Non convex shapes

Differing variance of clusters
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k-means Clustering

Shivaram Kalyanakrishnan

February 17, 2017

Abstract

We introduce the k-means clustering problem, describe the k-means clustering algorithm,
and provide a proof of convergence for the algorithm.

1 The k-means Clustering Problem

We are given a data set (x1,x2, . . . ,xn), where for i 2 {1, 2, . . . , n}, xi 2 Rd. Here d � 2 is the
dimension of the data set. We are also specified an integer k � 2. The objective of k-means
clustering is to partition the data set into k clusters, such that each cluster is as “tight” as
possible. We define this objective more precisely.

A clustering C : {1, 2, . . . , n} ! {1, 2, . . . , k} assigns one of k clusters to each point in
the data set. Each cluster k0 2 {1, 2, . . . , k} is also associated with a centre µk0 2 Rd. If
we take a clustering C along with the sequence µ representing the centres of its k clusters—
µ = (µ1,µ2, . . . ,µk)—we can define “tightness” in terms of the aggregate distance between the
data points and the centres of the clusters to which they are assigned by C. If C(i) is the cluster
in {1, 2, . . . , k} to which C assigns input point i, the Euclidean distance between the point and
its cluster center is kxi � µC(i)k. The most common measure of the tightness of a clustering C
(along with cluster centres µ) is the sum squared error (SSE), defined as

nX

i=1

kxi � µC(i)k2.

Other definitions of tightness may also be used, but this particular one enjoys nice mathematical
properties, as we shall shortly see.

The k-means clustering problem is the problem of finding a clustering among the set of
all clusterings, along with a sequence of cluster centres, such that the corresponding SSE is
minimal. Unfortunately, even for k = 2, this problem is NP-hard for general d and n [2]. If we
revise our aim to find a “reasonable”, rather than optimal, clustering, it turns out we can do
quite nicely by applying the k-means clustering algorithm. This algorithm is an iterative one,
which provably converges to a local minimum.

2 k-means Clustering Algorithm

Before we specify the k-means clustering algorithm, we settle one relevant matter. Recall that a
clustering algorithm must return both a clustering and a centre for each cluster. The following
lemma shows that for any fixed clustering, the SSE is minimised when the centre associated
with each cluster is the mean (or centroid) of the set of points assigned to that cluster.
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Lemma 1. Consider the points z1, z2, . . . , zm
, where m � 1, and for i 2 {1, 2, . . . ,m}, zi 2 Rd

.

Let z̄ = 1
m

Pm
i=1 z

i
be the mean of these points, and let z 2 Rd

be an arbitrary point in the same

(d-dimensional) space. Then

mX

i=1

kzi � zk2 �
mX

i=1

kzi � z̄k2.

Proof.

mX

i=1

kzi � zk2 =
mX

i=1

k(zi � z̄) + (z̄ � z)k2

=
mX

i=1

�
kzi � z̄k2 + kz̄ � zk2 + 2(zi � z̄) · (z̄ � z)

�

=
mX

i=1

kzi � z̄k2 +
mX

i=1

kz̄ � zk2 + 2
mX

i=1

(zi · z̄ � zi · z � z̄ · z̄ + z̄ · z)

=
mX

i=1

kzi � z̄k2 +mkz̄ � zk2 + 2(mz̄ · z̄ �mz̄ · z �mz̄ · z̄ +mz̄ · z)

=
mX

i=1

kzi � z̄k2 +mkz̄ � zk2

�
mX

i=1

kzi � z̄k2.

The k-means clustering algorithm, shown below, is rather straightforward. We begin with
an arbitrary clustering, and in line with Lemma 1, set the cluster centres to be the means of
the points in each cluster. Thereafter, we examine each point. If it so happens that the closest
cluster centre to a point is not the centre of its current cluster, the point is shifted to the cluster
to whose centre it is closest. The change in cluster assignments now calls for a corresponding
recalculation of the cluster centres; this process iterates until convergence.

k-means Clustering Algorithm

Let C0 be an arbitrary clustering, and let µ0 = (µ1,µ2, . . . ,µk) be a sequence of
centres such that for k0 2 {1, 2, . . . , k}, µ0

k0 is the centroid of the points in the k0-th cluster.
t 0.
converged false.
While ¬converged

converged true.
for i 2 {1, 2, . . . , n}

Ct+1(i) Ct(i).
for k0 2 {1, 2, . . . , k}

If k0 6= Ct+1(i) and kxi � µk0k < kxi � µCt+1(i)k
Ct+1(i) k0.
converged false.

for k0 2 {1, 2, . . . , k}
Set µt+1

k0 to be the centroid of all points i such that Ct+1(i) = k0.
t t+ 1.

Return Ct,µt.

As per the procedure outlined above, it is entirely possible to achieve clusterings that assign
no points to some of the k clusters. In such a case, the corresponding cluster centre can be set
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arbitrarily (since the mean is undefined). In practice, though, it is common to use all k clusters
e↵ectively—for instance, one could set the centre of an empty cluster to be one of the points in
the data set, which would ensure that the cluster will not be empty in the next iteration.

It should also be noted that the choice of the initial clustering, C0, can make a significant
di↵erence to the SSE of the final clustering obtained. Specialised initialisation strategies (such
as k-means++ [1]) are often used to good e↵ect. It exceeds the scope of this discussion to
describe initialisation procedures in detail. Rather, we proceed to prove that regardless of the
initialisation, the algorithm will necessarily converge.

Theorem 2. The k-means clustering algorithm converges.

Proof. Suppose that the algorithm proceeds from iteration t to iteration t+1. It su�ces to show
that SSE(Ct+1, µt+1) < SSE(Ct, µt). To see why, consider that if that was true, no clustering
can be visited twice; since the number of possible clusterings is finite (kn), the algorithm must
necessarily terminate. By the construction of the algorithm, we know that it terminates when
no point has a cluster centre closer than the centre of its current cluster: in other words, the
current clustering is locally optimal.

We show that SSE(Ct+1, µt+1) < SSE(Ct, µt) in two steps. First, we show that

SSE(Ct+1,µt) < SSE(Ct,µt), (1)

and next, we show that
SSE(Ct+1,µt+1)  SSE(Ct+1,µt). (2)

The first step follows directly from the logic of the algorithm: Ct and Ct+1 are di↵erent only if
there is a point that finds a closer cluster centre in µt than the one assigned to it by Ct:

SSE(Ct+1,µt) =
nX

i=1

kxi � µt
Ct+1(i)k

2 <
nX

i=1

kxi � µt
Ct(i)k

2 = SSE(Ct,µt).

The second step puts Lemma 1 to use:

SSE(Ct+1,µt+1) =
nX

i=1

kxi � µt+1
Ct+1(i)k

2

=
kX

k0=1

X

i2{1,2,...,n},Ct+1(i)=k0

kxi � µt+1
Ct+1(i)k

2


kX

k0=1

X

i2{1,2,...,n},Ct+1(i)=k0

kxi � µt
Ct+1(i)k

2

=
nX

i=1

kxi � µt
Ct+1(i)k

2

= SSE(Ct+1,µt).
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