Day 15 - 1 November - Cross Validation and K-Nearest Neighbor
Agenda:

* Cross Validation
+ K-Nearest Neighbor
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K-fold Cross Validation
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7.10.1 K-Fold Cross-Validation

Ideally, if we had enough data, we would set aside a validation set and use
it to assess the performance of our prediction model. Since data are often
scarce, this is usually not possible. To finesse the problem, K-fold cross-
validation uses part of the available data to fit the model, and a different
part to test it. We split the data into K roughly equal-sized parts; for
example, when K = 5, the scenario looks like this: /
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For the kth part (third above), we fit the model to the other K — 1 parts
of the data, and calculate the prediction error of the fitted model when
predicting the kth part of the data. We do this for £ = 1,2,..., K and
combine the K estimates of prediction error.

Here are more details. Let « : {1,...,N} — {1,..., K} be an indexing
function that indicates the partition to which observation i is allocated by
the randomization. Denote by f~*(z) the fitted function, computed with
the kth part of the data removed. Then the cross-validation estimate of
prediction error is

N

V() = 3 3 L S 0(a). (7.43)
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Typical choices of K are 5 or 10 (see below). The case K = N is known
as leave-one-out cross-validation. In this case k(i) = i, and for the ith
observation the fit is computed using all the data except the ith.
Given a set of models f(z,«) indexed by a tuning parameter «, denote
H'woé'f by f~*(x, «) the ath model fit with the kth part of the data removed. Then
paré me W for this set of models we define

B N
bwnin g CV(f, a) = % 3 Ly 0 @i, ). (7.49)

The function CV(f , ) provides an estimate of the test error curve, and we
find the tuning parameter & that minimizes it. Our final chosen model is
f(z, &), which we then fit to all the data.
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7.10.2 The Wrong and Right Way to Do Cross-validation

Consider a classification problem with a large number of predictors, as may
arise, for example, in genomic or proteomic applications. A typical strategy
for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors that show
fairly strong (univariate) correlation with the class labels

2. Using just this subset of predictors, build a multivariate classifier.

3. Use cross-validation to estimate the unknown tuning parameters and
to estimate the prediction error of the final model.

Is this a correct application of cross-validation?

The predictor screening step uses all of the data. When training each model for cross-
validation, this means each of those models will have trained on the test data that was left out.



Here is the correct way to carry out cross-validation in this example:
1. Divide the samples into K cross-validation folds (groups) at random.

2. For each fold k =1,2,..., K

(a) Find a subset of “good” predictors that show fairly strong (uni-
variate) correlation with the class labels, using all of the samples
except those in fold k.

(b) Using just this subset of predictors, build a multivariate classi-
fier, using all of the samples except those in fold k.

(c) Use the classifier to predict the class labels for the samples in
fold k.

The error estimates from step 2(c) are then accumulated over all K folds, to
produce the cross-validation estimate of prediction error. The lower panel



In general, with a multistep modeling procedure, cross-validation must
be applied to the entire sequence of modeling steps. In particular, samples
must be “left out” before any selection or filtering steps are applied. There
is one qualification: initial unsupervised screening steps can be done be-
fore samples are left out. For example, we could select the 1000 predictors

with highest variance across all 50 samples, before starting cross-validation.
Since this filtering does not involve the class labels, it does not give the
predictors an unfair advantage.
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FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

15-Nearest Neighbor Classifier
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