CS3000: Algorithms & Data
Paul Hand

Lecture 3:
e Stable Matching: Gale-Shapley Algorithm
e Asymptotic Analysis

Jan 14, 2019

Stable Matching Problem

* Many job candidates (eg. doctors). Many jobs (eg.
residency programs). You are to assign candidates
to jobs. How should you do it?

Sé(AL) M“td‘_j_’f'o \/‘/z“b ’““Zf‘l{m\ d{»puéJOU

; fo (‘CTG (f?,l\ y&/qc;/’
/\/O Ccmd'(d’at’é’vjvb rJa/F P/CJCHS ac

OVEr what Hw@ have.

Stable Matching Problem

* Many job candidates (eg. doctors). Many jobs (eg.
residency programs). You are to assign candidates
to jobs. How should you do it?

’ o F it has no inskbilies
A mué’c‘k;y is 6téabl€ 5t has NS

An i'nsﬁub}')lyv i5)
? (C’I J) c /V\ J J Unma[;cl/\écﬁ ; ah

'
and

@ CUSy

i - Jo >
. ((/J) € M} Cl unmaﬁch@g/ |

., ;

o (C,0)EM e cs '/

g’)~ o J‘O C>_C|
(c'))eMm 5 C.

H? o LQ\'\O\'\Y dQ 0 L})O\N
/ C\\E5 to clo

Stub'é /\/lakok.&y — Questions
. For ony celb of preferences does o stable matehiy existT
he mor€ then one Sluble mal‘cboéy? (3@%

v CC"I'\ 6"\C’{6
j("“' },’,.J gone 1f it 6)((5/;5?.

+ How com

Gole-Snaple
O‘\%O“m* .~

Gale-Shapley Algorithm

* Let M be empty
e While (some job j is unmatched):
e« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M
+ ElseIf (c is matched to j’ & c: 3’ > j):
e c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j'):
e c accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

Gale-Shapley Algorithm

* Let M be empty

e While (some job j is unmatched):
o« If (j has offered a job to everyone): break
let c be the highest-ranked candidate

e Else:

to which j has not yet offered a job

* j makes an offer to c:
* If (c is unmatched):

e c accepts, add (c,j) to M

« ElseIf (c is matched to j’
* c rejects, do nothing
e ElseIf (c is matched to j’

& C:

& C:

3’ > 3):

J>37):

e c accepts, remove (c,j’) from M and

e Output M

add (c,j) to M

What matching does the
algorithm give this data for
jobs (j1 and j2) and candidates
(c1andc2)?

|| ast | 2nd |
a o

cl

Gale-Shapley Algorithm

* Questions about the Gale-Shapley Algorithm:
* Will this algorithm terminate? After how long?
* Does it output a perfect matching?
» Does it output a stable matching?
* How do we implement this algorithm efficiently?

* At all steps, the state of the
Observations about GS algorithm is matching.

e Let M be empty))
+ While (some job j is unmatched): Jobs make offers in descending

« If (j has offered a job to everyone): break ortier
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
» j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M . .
. ElseIf (c is matched to j’ & c: j’ > j): * Candidates that get a job never
« ¢ rejects, do nothing become unemployed

* ElseIf (c is matched to j’ & c: j > j'):
e Cc accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

e Candidates accept offers in
ascending order

* Claim: The GS algorithm
terminates after n?
iterations of the main loop

Does the GS algorithm terminate?

e Let M be empty
* While (some job j is unmatched) :
« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: j’' > j):
e c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j'):
e Cc accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

* Claim: The GS algorithm
outputs a perfect matching
(all jobs are matched and all

. Let M be empty candidates are matched).

* While (some job j is unmatched) :
« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
» j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: j’' > j):
e c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j'):
e Cc accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

s the output a perfect matching?

* Claim: The GS algorithm outputs a

s the output a stable matching? & ;e matching.

* Let M be empty . s .
» While (some job j is unmatched) : * Proof by contradiction:
« If (j has offered a job to everyone): break Suppose there is an |n5tab|||ty

e Else: let c be the highest-ranked candidate
to which j has not yet offered a job
¢ j makes an offer to c:
e If (c is unmatched) :
» c accepts, add (c,]j) to M
e ElseIf (c is matched to j’ & c: j’' > j):
* c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j’):
» c accepts, remove (c,j’) from M and
add (c,j) to M

» Output M
An instabilly 19 . Ci 'Sy

’ (C)) C M J J" L“r\/v;ll,d/\ci , ‘
N ’ ‘ . J; c'>C
(.3 e M, A" vnmatched, O

C (COJEM e GO
e i em s

. _ * Running Time:
Running time of GS? * A straightforward implementation

requires = n3 operations, ® n? space
» Let M be empty

» While (some job j is unmatched):
e« If (j has offered a job to everyone): break
e Else: let c be the highest-ranked candidate
to which j has not yet offered a job
¢ j makes an offer to c:
e If (c is unmatched) :
» c accepts, add (c,]j) to M
e ElseIf (c is matched to j’ & c: j’' > j):
* c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j’):
» c accepts, remove (c,j’) from M and
add (c,j) to M
» Output M

* Running Time:
Better data structure * A careful implementation requires ~ n°

» Let M be empty operations, = 'I’lz Space
» While (some job j is unmatched):
e« If (j has offered a job to everyone): break
e Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched) :
e c accepts, add (c,]j) to M
e ElseIf (c is matched to j’ & c: j’' > j):
* c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j’):
» c accepts, remove (c,j’) from M and
add (c,j) to M
*» Output M

HEEEIEIEIE > IS
CH MGH BW MTA BID ond g gthgth st
m m cost of 2 vhern

BD BW MTA MGH CH gth pnd gt 3d 5th loohups Lo del
» eermire

BW BID MTA CH MGH @ 1t nd 3rd
MMGH CH MTA BID BW m 1t 5th gth 3rd Hnd

MTA BW CH BID MGH m Sgth nd gth qst 3rd

sk o n lookup o determine

Does Qo prefer MGH
OR C\H <

Notes for instructor
Students may ignore
because they are repeated
elsewhere

s thig q\aorlvnm Coir?

[No

considec bne example:
C: 9, > dy: G2 >C
Ca Jg >, Jy: €y 2C2

ﬂccordms to tne prefecences | there waill odtmbg
be o pived pockner Bal is urhappy -

& fhe s ove nappy the
Cndidodes ave Unhappb and Vice
Versx.

The alpe prioritiey o cecte
Prtfeg)eme_ ETeNn youpd

IT DOESNT TRERAT JOBS RAND CANDI
™E SME. DDNB

Proa.%o@
Term{na(:;af\ s
Eoch !
Only N

oop makes & rBE one new offer.
2 pola| possible offers

Pecfect Matching®
Syppose @

5ebisynma tehed.
. Job offer wes made

b all candidatcs

e ¢ 50b -
condidates have & ik b
' ?” amé ¢ andidate 15 matehe Conbrodictin
. So Som
p atﬂl’lC‘J, .
v f vnm [t’"
Suppo & Caw}iilc;:l Vnmakhéfl‘ Cenbrodictin
. Some
Séabfﬁty% . N Pasj;b/g instability
As maéc}nﬁj is Pf‘ffé‘t/ Gt? R
I (CIJ)CM ot Coo C}CI
kleJ|)6 J e i
C hd I

J otted b &
jﬂar} as \:l'- ¢
Conlredic bren,

A(: some P"“‘t/
0" /ea5{2 as
p jm} as J.

has @ Jeb at leest

Asymptotic Analysis

Analyzing run time of algorithms

* Predicting the wall-clock time of an
algorithm is basically impossible.
* What machine will actually run the algorithm?
* Impossible to exactly count “operations”?
* Which data will it be applied to?

* What do we do instead?

* We compare how the algorithm scales with lots
of data.

Common computational complexity rates
(and what they mean in time)

prgmf\%{ g\
\2eee UcdeL coln ¢ /\ ‘0
Y Atorio)
n nlog,n n? n? 1.5" oz n! .

n=10 < 1sec < 1sec < 1sec < 1sec < 1sec < 1sec 4 sec
n=30 < 1 sec < 1 sec < 1sec < 1sec < 1sec 18 min 10%5 years
n=>50 < 1sec < 1 sec < 1sec < 1sec 11 min 36 years very long

n =100 < 1 sec < 1 sec < 1sec 1 sec 12,892 years 10'7 years very long
n=1,000 < 1sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

N
| OO0 OO 6\“6(35 P& Second

wawfccieﬂcb Motes wore e problern Size

Common computational complexity rates
(and what they mean in time)

2

3

n nlog,n n n 1.5" 2n n!
n=10 < 1sec < 1 sec < 1sec < 1sec < 1sec < 1 sec 4 sec
n=30 < 1 sec <lsec < 1sec < 1sec < 1sec 18 min 10% years
n=>50 < 1sec < 1 sec < 1sec < 1sec 11 min 36 years very long
n =100 < 1sec < 1 sec < 1sec 1 sec 12,892 years 10'7 years very long

n=1,000 < 1sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n =1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Activity:

Suppose 1 million write an
essay for a standardized test
each year. You have code
that takes two essays as
input and outputs if there is
plagiarism. You want to
determine if there is any
plagiarism by comparing all
possible pairs of essays.
Roughly how long will it
take?

Common computational complexity rates
(and what they mean in time)

2

3

n nlog,n n n 1.5" 2n n!
n=10 < 1sec < 1 sec < 1sec < 1sec < 1sec < 1 sec 4 sec
n=30 < 1 sec <lsec < 1sec < 1sec < 1sec 18 min 10% years
n=>50 < 1sec < 1 sec < 1sec < 1sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1sec 1 sec 12,892 years 107 years very long

n=1,000 < 1sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n =1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Activity:

Suppose someone’s
password was an arbitrary
sequence of 50 bits.
Someone wants to hack it
by trying all possible
passwords. Roughly how
long will this take?

Asymptotic Order Of Growth

* “Big-Oh” Notation: f(n) = O(g(n)) if there exists
c € (0,00) andny € Nsuchthat f(n) <c-g(n)
for everyn = n,.

 Asymptotic version of f(n) < g(n)

Roughly equivalent to rlll—{{;lo e < o0

Asymptotic Order Of Growth

* “Big-Oh” Notation: f(n) = O(g(n)) if there exists
c € (0,00) andny € Nsuchthat f(n) <c-g(n)
for every n = n,.

 Asymptotic version of f(n) < g(n)

. . f(n)
* Roughl lent to lim —=
oughly equivalent to lim -~ < 00

 Activity: Which of these statements are true?
* 3n? +n=0n?
e n3=0mn?
« 10n* = 0(n°)
* logzn = 0(logy6 1)
* nlog,(n?) = 0(nlog, n)

Big-Oh Rules

* Constant factors can be ignored
*VC >0 Cn=0(n)

* Smaller exponents are Big-Oh of larger exponents
*VYa>b n?=0n%

* Any logarithm is Big-Oh of any polynomial
*Va,e >0 logd n=0(n%

* Any polynomial is Big-Oh of any exponential
Va>0,b>1 n=0(b")

* Lower order terms can be dropped
e n? +n32 +n=0mn?

Asymptotic Order Of Growth

* “Big-Omega” Notation: f(n) = Q(g(n)) if there
exists ¢ € (0,0) andng € Nsit. f(n) =c-gn)
for everyn = n,.

 Asymptotic version of f(n) = g(n)

* Roughly equivalent to lim M> 0

n—oo g(n)

* “Big-Theta” Notation: f(n) = @(g(n)) if there
exists ¢; < ¢, € (0,00) and ny € N such that
c,-gn) =f(m) =c; - gn) forevery n = n,.

 Asymptotic version of f(n) = g(n)

* Roughly equivalent to lim ME (0, o)
n—oo g(n)

Asymptotic Running Times

* We usually write running time as a Big-Theta
* Exact time per operation doesn’t appear
* Constant factors do not appear
* Lower order terms do not appear

* Examples:
* 30log, n + 45 = ©(logn)
* Cnlog, 2n = ©(nlogn)
« X1l =0(n%)

Asymptotic Order Of Growth

* “Little-Oh” Notation: f(n) = o(g(n)) if for every
c > 0 there existsng € Ns.t. f(n) <c-g(n) for
everyn = ny.

* Asymptotic version of f(n) < g(n)

* Roughly equivalent to lim f(m) =0

n—oo g(n)
- “Little-Omega” Notation: f(n) = w(g(n)) if for
every ¢ > (there exists ny € N such that
f(n) >c-gn) foreveryn = n,.
» Asymptotic version of f(n) > g(n)

* Roughly equivalent to lim fm _

n—oo g(n)

Activity

* Fill in the blank with the strongest statement that
applies (0,,0, 0, w) :

* 15nlog,n = (log, Vn)
e n? = (5n%+n)
« 100n = (5n?%+n)

o 310g2 n :210g3 n

