CS3000: Algorithms & Data
Paul Hand

Lecture 17/:

* Implementation of Dijkstra’s Algorithm
(Data Structures)

Mar 20, 2019

Execute Dijkstra’s Algorithm: Activity
Find distances from A and the shortest path tree

| AlB | C D E
do(u) O 00 ¢'s) ¢'s) ¢'s)
di(u)
d,(u)
ds(u)
da(u)
ds(u)

o O O O o

Implementing Dijkstra

Dijkstra(G = (V,E,{£(e)}, s):

d[s] <« 0, d[u] < o for every u != s
parent[u] <1 for every u
Q <« V // Q holds the unexplored nodes

While (Q is not empty):

U < argmin d[w] //Find closest unexplored
WEQ

Remove u from Q coment Glinate

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + 2(u,v)):
d[v] < d[u] + € (u,v)
parent[v] < u

Return (d, parent)

Priority Queues / Heaps

Priority Queues

* Need a data structure Q to hold key-value pairs

* Need to support the following operations
* Insert(Q,k,v): add a new key-value pair
* Lookup(Q,k): return the value of some key
* ExtractMin(Q): identify the key with the smallest value
* DecreaseKey(Q,k,v): reduce the value of some key

Priority Queues

* Naive approach: Sorted List

Key a ¢c e h b g k d f

1 3 5 8 10 20 42 45 50

 Activity: With n total items, how long would it take to perform
* Insert(Q,k,v): add a new key-value pair?
* Lookup(Q,k): return the value of some key?
* ExtractMin(Q): identify the key with the smallest value?
* DecreaseKey(Q,k,v): reduce the value of some key?

Priority Queues

* Naive approach: linked lists

Key a C e h b g k d f

11 12 2 36 4 20 42 10 8

 Activity: With n total items, how long would it take to perform
* Insert(Q,k,v): add a new key-value pair?
* Lookup(Q,k): return the value of some key?
* ExtractMin(Q): identify the key with the smallest value?
* DecreaseKey(Q,k,v): reduce the value of some key?

Priority Queues

* Naive approach: linked lists

Key a C e h b g k d f

11 12 2 36 4 20 42 10 8

* Insert takes O(1) time
* ExtractMin, DecreaseKey take O(n) time

* Binary Heaps: implement all operations in O(log n)
time where n is the number of keys

Heaps

* Organize key-value pairs as a binary tree
* Later we’ll see how to store pairs in an array

* Heap Order: If a is the parent of b, then v(a) < v(b)

Each node represents a
key-value pair

Implementing ExtractMin

Implementing ExtractMin

Implementing ExtractMin

Implementing ExtractMin

Implementing ExtractMin

Implementing ExtractMin

* Three steps:
e Pull the minimum from the root
* Move the last element to the root
* Repair the heap-order (heapify down)

Implementing DecreaseKey

Implementing DecreaseKey

Implementing DecreaseKey

* Two steps:
* Change the key
* Repair the heap-order (heapify up)

Implementing Insert

Implementing Insert

Implementing Insert

* Two steps:
e Put the new key in the last location
* Repair the heap-order (heapify up)

Implementation of Binary Tree Using Arrays G

* Maintain an array V holding the values (in order
of top to bottom, followed by left to right) ‘ ‘ ‘ ‘ ‘ ‘ ‘

* For any node i in the binary tree, what is the
index of

e LeftChild(i) =
e RightChild(i) =
e Parent(i) =

Array V vi v2 v3 v4 v5 v6

* Draw the tree on the array above.

Implementation of Priority Queue Using Arrays

Array V

Array K

* Maintain an array I/ holding the (key,value) at
each node the binary tree

* Maintain an array K mapping keys index
 Can find the value for a given key in O(1) time

Binary Heaps

* Heapify:
* O(1) time to fix a single triple
* With n keys, might have to fix O(log n) triples
* Total time to heapify is O(log n)

* Lookup takes O(1) time

e ExtractMin takes O(log n) time

* DecreaseKey takes O(log n) time
* Insert takes O(log n) time

Lookup takes O(1) time
ExtractMin takes O(log n) time

Implementing Dijkstra with Heaps DecreaseKey takes O(log n) time

Insert takes O(log n) time

Dijkstra(G = (V,E,{£(e)}, s):
Let Q be a new heap
Let parent[u] « 1 for every u
Insert(Q,s,0), Insert(Q,u, ©) for every u != s

How much time does Dijkstra take?

While (Q is not empty):
(u,d[u]) ¢« ExtractMin (Q)

For ((u,v) in E):
d[v] < Lookup(Q,v)
If (d[v] > d[u] + 2(u,v)):
DecreaseKey (Q,v,d[u] + £ (u,v))
parent[v] «<u

Return (d, parent)

Dijkstra Summary:

* Dijkstra’s Algorithm solves single-source shortest
paths in non-negatively weighted graphs
* Algorithm can fail if edge weights are negative!

* Implementation:
* A priority queue supports all necessary operations
* Implement priority queues using binary heaps
e Overall running time of Dijkstra: O(mlogn)

* Compare to BFS

