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Depth-First Search (DFS)



Exploring a Graph

* Problem: Is there a path from s to t?
* Idea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back



Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
exploredu] =1

for ((u,v) in E):

if (explored[v]=0):

parent[v] = u
DF'S (v)

DFS %rec
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Chacse Activity: Draw the BFS and DFS Trees
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Depth-First Search

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u,a), (u,c),(c,b)
* These are the edges that explore new nodes
* Forward edges: (u, b)
* Ancestor to descendant
* Backward edges: (a, u)
 Descendant to ancestor
* Cross edges: (c,a)
* No ancestral relation




Pre-Ordering ° °

 Order the vertices by when G = (V,E) is a graph
they were first visited by DFS explored[u] = 0 Vu

© ors () OO

/ \. explored[u] =1
@ Q pre-visit (u)
© R

for ((u,v) in E):

A 2
if (explored[v]=0):
U o b, C é 3;

) parent[v] = u
DF'S (v)

* Maintain a counter clock, initially set clock = 1
* pre-visit (u) :
set preorder[u]=clock, clock=clock+l



Post-Ordering

* Order the vertices by when
they were last visited by DFS

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
exploredu] =1

for ((u,v) in E):
if (explored|[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

Post-Order

vV

1
X /
b 3
C 2

* Maintain a counter clock, initially set clock = 1

e post-visit(u):
set postorder[u]=clock,

clock=clock+1



Preorder versus postorder
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Pre-order: F, B, A, D, C, E, G, I, H. Post-order: A, C, E, D, B, H, |, G, F.



() Form DFS Tree
Activity @ Red ort st ordor

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order
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* Observation: if postorder[u] < postorder[v] then
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Observation about postordering Escomple

* Observation: if postorder[u] < postorder[v] then f\b

(u,v) is a backward edge

<
CVOM 6’\(;6

)
e DFS(u) can’t finish until its children are finished O/ C\g)
c d

e If (u,v) is a tree edge, then postorder[u] > postorder|[v]

e If (u,v) is a forward edge, then postorder[u] > postorder|[v]

e If postorder[u] < postorder[v], then DFS(u) finishes (6} ”/} IS @ cress s &
before DFS(v), thus DFS(v) is not called by DFS(u) TR pt(e)< Postc/ )
 When we ran DFS(u), we must have had explored[v]=1 béé Strkt Jste A
U
* Thus, DFS(v) started before DFS(u) JD"HZ Zhd cz74[-1/~

e DFS(v) started before DFS(u) but finished after

e Can only happen for a backward edge



Fast Topological Ordering



Topological Ordering (TO)

* DAG: A directed graph with no directed cycles.

Seach for cycles
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Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy4, ..., 1, so that (vi, vj) EE=j]>Ii
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Activity

 Come up with two different topologically orderings
of the following graph




Algorithm for Topological Ordering

—
* Claim: ordering nodes by decreasing postorder
gives a topological ordering T
* Proof:
Guch an 656 L (st on/y™
* A DAG has no backward edges  wetd form  a %615} /! \. L U
. : : — @ @ G-, <, 0
» Suppose this is not a topological ordering
* That means there exists an edge (u,v) such that C Revesed Btonr
postorder[u] < postorder|[v] u, g/ ca

 We showed that any such (u,v) is a backward edge @ @%
* But there are no backward edges, contradiction! w
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Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy4, ..., 1, so that (vi, vj) EE=j]>Ii

e Can compute a TO in O(n + m) time using DFS
* Reverse of post-order is a topological order



Activity

* Come up with a DAG with 3 nodes such that the
preordering is not a topological ordering.
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Activity: Find the shortest path /?
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Weighted Graphs

* Definition: A weighted graph ¢ = (V, E, {w(e)})
* I/ is the set of vertices
| € VXV is the set of edges
* w, € R are edge weights/lengths/capacities
* Can be directed or undirected

* Today:
* Directed graphs (one-way streets)
 Strongly connected (there is always some path)
* Non-negative edge lengths (£(e) = 0)



Shortest Paths

* The length ofa path P = v; — v, — - — v, is the
sum of the edge lengths

* The distance d(s, t) is the length of the shortest
path fromstot

* Shortest Path: given nodes s,t € V, find the
shortest path from sto t

* Single-Source Shortest Paths: given a node s € I/,
find the shortest paths from s toeveryt € V



Structure of Shortest Paths

e If (u,v) € E,thend(s,v) <d(s,u) + ¢(u,v) for
everynhodes € V

e If (u,v) € E,andd(s,v) =d(s,u) + £(u,v) then
there is a shortest s ~» v-path ending with (u, v)



