CS3000: Algorithms & Data Paul Hand

Lecture 15:

- Depth First Search
- Topological Sorting
- Shortest Paths

Mar 13, 2019

Depth-First Search (DFS)

Exploring a Graph

- Problem: Is there a path from s to t?
- Idea: Explore all nodes reachable from s.

- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - Depth-First Search: follow a path until you get stuck, then go back

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
    explored[u] = 1

for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS(v)
```


Choose

Gdges by

alphabetral

order

Activity: Draw the BFS and DFS Trees

(starting at s) BFS tree

DFS Tree

Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
 - Tree edges: (u, a), (u, c), (c, b)
 - These are the edges that explore new nodes
 - Forward edges: (u, b)
 - Ancestor to descendant
 - Backward edges: (a, u)
 - Descendant to ancestor
 - Cross edges: (c, a)
 - No ancestral relation

Pre-Ordering

 Order the vertices by when they were first visited by DFS

Vertex	Pre-Order
U	1
a	2
Ь	3
C	4

- Maintain a counter clock, initially set clock = 1
- pre-visit(u):
 set preorder[u]=clock, clock=clock+1

Post-Ordering

 Order the vertices by when they were last visited by DFS


```
Post order?

a, cb, U
```


Vertex	Post-Order				
\mathcal{U}	4				
a	1				
7	3				
C	2				

- Maintain a counter clock, initially set clock = 1
- post-visit(u):
 set postorder[u]=clock, clock=clock+1

Preorder versus postorder

Pre-order: F, B, A, D, C, E, G, I, H.

Post-order: A, C, E, D, B, H, I, G, F.

1) Form PFS Tree Activity 2) Read off Post order

- Compute the **post-order** of this graph
 - DFS from a, search in alphabetical order

DFS	Tree
	(a)
(b	/
(h)	
Ġ	
(4)	

	Pc	s st	. C	OYO	or		
5	9	h	d	C	e	6	Q
1	2	3	4	S	6	7	8

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	>	5	4	6	l	2	3

Activity

Edga (V,V) from U Go V

• Observation: if postorder[u] < postorder[v] then (u,v) is a backward edge

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3

Observation about postordering

- Observation: if postorder[u] < postorder[v] then (u,v) is a backward edge
 - DFS(u) can't finish until its children are finished
 - If (u,v) is a tree edge, then postorder[u] > postorder[v]
 - If (u,v) is a forward edge, then postorder[u] > postorder[v]
 - If postorder[u] < postorder[v], then DFS(u) finishes before DFS(v), thus DFS(v) is not called by DFS(u)
 - When we ran DFS(u), we must have had explored[v]=1
 - Thus, DFS(v) started before DFS(u)
 - DFS(v) started before DFS(u) but finished after
 - Can only happen for a backward edge

Example

(E,d) is a cross edge

If post(e) < post(d)

E started before d

but

finished after

Fast Topological Ordering

Topological Ordering (TO)

• DAG: A directed graph with no directed cycles.

Are these DAGs?

Search for cycles Remove vertices that add not be part of any cycle.

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
 - Label nodes v_1, \dots, v_n so that $(v_i, v_j) \in E \Longrightarrow j > i$

Activity

 Come up with two different topologically orderings of the following graph

Algorithm for Topological Ordering

 Claim: ordering nodes by decreasing postorder gives a topological ordering

- A DAG has no backward edges (Such an GIGE wold form a cycle)
- Suppose this is **not** a topological ordering
 - That means there exists an edge (u,v) such that postorder[u] < postorder[v]
 - We showed that any such (u,v) is a backward edge
 - But there are no backward edges, contradiction!

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
 - Label nodes v_1, \dots, v_n so that $(v_i, v_j) \in E \Longrightarrow j > i$

- Can compute a TO in O(n+m) time using DFS
 - Reverse of post-order is a topological order

Activity

• Come up with a DAG with 3 nodes such that the preordering is not a topological ordering.

Shortest Paths

DFS Will make this gung as long as worst cost Consider FB Social graph.

Given USEr (& USER 2

You wont to determine it there
is a path between USER (& USER 2

Would you USE BFS or DFS

to do this?

Weighted Graphs

- **Definition:** A weighted graph $G = (V, E, \{w(e)\})$
 - V is the set of vertices
 - $E \subseteq V \times V$ is the set of edges
 - $w_e \in \mathbb{R}$ are edge weights/lengths/capacities
 - Can be directed or undirected

• Today:

- Directed graphs (one-way streets)
- Strongly connected (there is always some path)
- Non-negative edge lengths $(\ell(e) \ge 0)$

Shortest Paths

• The length of a path $P=v_1-v_2-\cdots-v_k$ is the sum of the edge lengths

- The distance d(s,t) is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$

Structure of Shortest Paths

• If $(u, v) \in E$, then $d(s, v) \le d(s, u) + \ell(u, v)$ for every node $s \in V$

• If $(u, v) \in E$, and $d(s, v) = d(s, u) + \ell(u, v)$ then there is a shortest $s \sim v$ -path ending with (u, v)