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Lecture 14:

* Bipartite Graphs and 2-coloring
 Depth First Search
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Recap: Graphs/BFS



Breadth-First Search (BFS) S

* Definition: the distance between s, t is the number OENOBNOBNO
of edges on the shortest path from s to té Q'g‘
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Bipartiteness / 2-Coloring



2-Coloring

* Problem: Team Forming
* Need to form two teams R, P

* Some people don’t want to be on the same team as
certain other people _Set of Pl €

* Input: Undirected graph G = (V, E)
* (u,v) € E means u, v wont be on the same team

* Output: Split V into two sets R, P so that no pair in
either set is connected by an edge



2-Coloring (Bipartiteness)

* Equivalent Problem: Is the graph G bipartite?

* A graph G is bipartite if | can split V into two sets L and
R such that all edges (u,v) € E go between L and R
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Activity: Is the following graph bipartite?
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Activity:

Give an example of a bipartite graph that is not connected
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Suppose a graph of 10 nodes is bipartite. What is the maximum number of edges
it can have?
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Activity: Is the following graph bipartite?

All omitted entries are zero
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Designing an Algorithm to determine if a
graph is bipartite

* Key Fact: If G contains a cycle of odd length, then G
is not 2-colorable/bipartite
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Designing the Algorithm

* ldea for the algorithm:
e BFS the graph, coloring nodes as you find them
* Color nodes in layer i purple if i even, red if i odd
e See if you have succeeded or failed



Designing the Algorithm w have
gning g Ay
A l“fo[oflm}
* Claim: If BFS 2-colored the graph successfully, the

graph has been 2-colored successfully

* Key Question: Suppose you have not 2-colored the
graph successfully, maybe someone else can do it?
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Depth-First Search (DFS)



Exploring a Graph

* Problem: Is there a path from s to t?
* Idea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back



Depth-First Search

G = (V,E) is a graph

explored[u] = 0 Vu °

DF'S (u) :
exploredu] =1

for ((u,v) in E): e

if (explored[v]=0) :
parent[v] =

u
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Depth-First Search
DFS éYC—e

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:

* Tree edges: (u,a), (u,c),(c,b)

* These are the edges that explore new nodes
* Forward edges: (u, b)

* Ancestor to descendant
* Backward edges: (a, u)

 Descendant to ancestor
* Cross edges: (c,a)

* No ancestral relation




Activity
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* Each edge has a type: * DFS this graph starting from node a

* Tree edges: (u, a), (u, c), (c,b) * Search in alphabetical order
* Edges that explore new nodes * Label edges as { tree , forward , backward , cross}
* Forward edges: (u, b) @
* Ancestor to descendant [ ree
* Backward edges: (a,u) @\
 Descendant to ancestor V/ ~
C,
* Cross edges: (c,a) /
* No ancestral relation @
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 Order the vertices by when / G = (V,E) is a graph
they were first visited by DFS explored[u] = 0 Vu

v DFS (u) : ° @
\\J explored[u] = 1
@

pre-visit (u)

W l
lé for ((u,v) in E): 84 2
if (explored[v]=0): E 3
parent[v] = u
DF'S (v) « %

* Maintain a counter clock, initially set clock = 1

* pre-visit (u) :
set preorder[u]=clock, clock=clock+l



Post-Ordering ° @

* Order the vertices by when G = (V,E) is a graph
they were last visited by DFS explored[u] = 0 Vu
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* Maintain a counter clock, initially set clock = 1
e post-visit(u):
set postorder[u]=clock, clock=clock+l



Preorder versus postorder
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Pre-order: F, B, A, D, C, E, G, I, H. Post-order: A, C, E, D, B, H, |, G, F.



Activity

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order




Ask the Audience

 Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order 8 7 5 4 6 1 2



