CS3000: Algorithms & Data Paul Hand

Lecture 14:

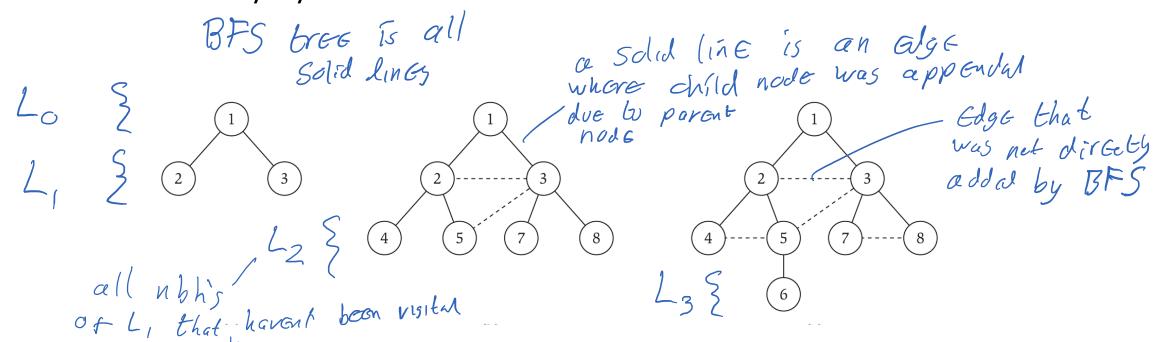
- Bipartite Graphs and 2-coloring
- Depth First Search

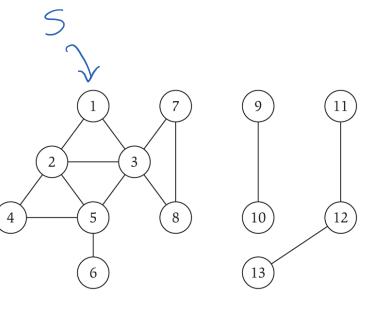
Mar 11, 2019

Recap: Graphs/BFS

Breadth-First Search (BFS)

- **Definition:** the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from s





Bipartiteness / 2-Coloring

2-Coloring

- Problem: Team Forming
 - Need to form two teams R, P
 - Some people don't want to be on the same team as certain other people

 Set of people
- Input: Undirected graph G = (V, E)
 - $(u, v) \in E$ means u, v wont be on the same team
- Output: Split *V* into two sets *R*, *P* so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
 - A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R

Color L red

L R

No edge between bwo red nodes

1 No edge between bwo purple nodes

3 4

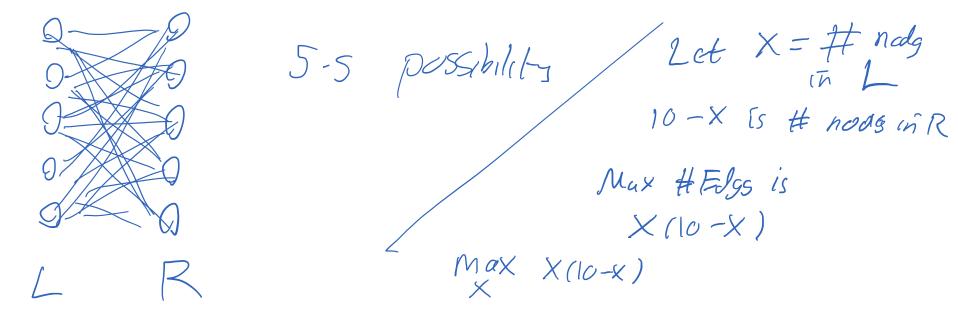
Activity: Is the following graph bipartite?

Can you assign 2 So that no edge connab the same adar Not buc -Colorable

Activity:

Give an example of a bipartite graph that is not connected

Suppose a graph of 10 nodes is bipartite. What is the maximum number of edges it can have?



Activity: Is the following graph bipartite?

All omitted entries are zero

NO
Baug of
cycle
1-3-8-1

Α	1	2	3	4	5	6	7	8	9	10
1			1					1		
2				1	1					1
3	1					1		1		
4		1			1				1	
5		1		1					1	
6			1				1	1		
7						1		1		
8	1		1			1	1			
9				1	1					
10		1								

Node	Color
3	R
4	
5	
6	1
7	&
G	R
9	
10	

Designing an Algorithm to determine if a graph is bipartite

Key Fact: If G contains a cycle of odd length, then G is not 2-colorable/bipartite

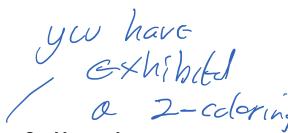
Proce by picture

Designing the Algorithm

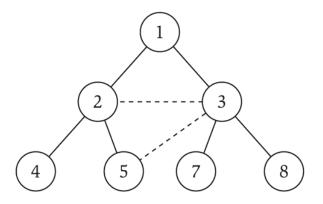
Idea for the algorithm:

- BFS the graph, coloring nodes as you find them
- Color nodes in layer i purple if i even, red if i odd
- See if you have succeeded or failed

Designing the Algorithm



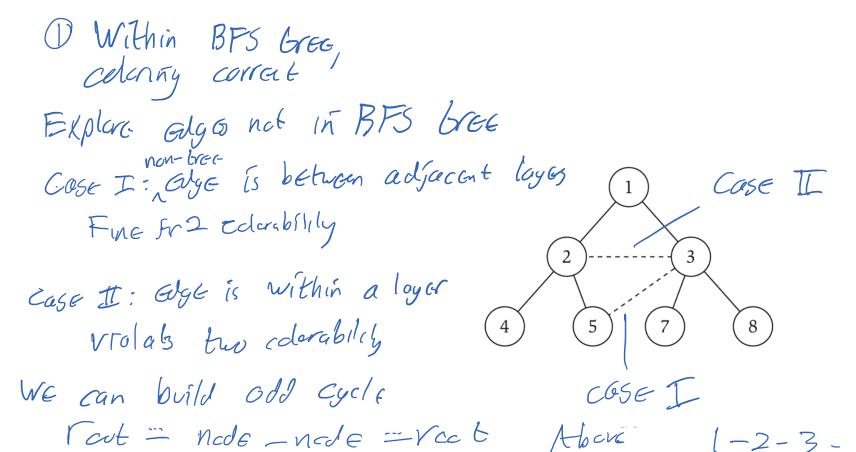
- Claim: If BFS 2-colored the graph successfully, the graph has been 2-colored successfully
- **Key Question:** Suppose you have not 2-colored the graph successfully, maybe someone else can do it?



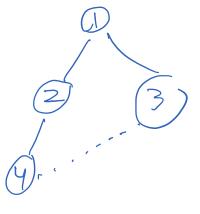
rout - - - node - node - - - - - - roct

Designing the Algorithm

- Claim: If BFS fails, then G contains an odd cycle
 - If G contains an odd cycle then G can't be 2-colored!



Even Cycli
Son 2



Depth-First Search (DFS)

Exploring a Graph

- Problem: Is there a path from s to t?
- Idea: Explore all nodes reachable from s.

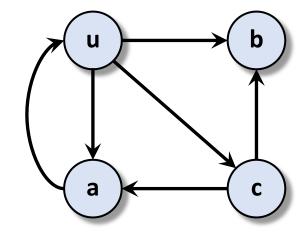
- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - Depth-First Search: follow a path until you get stuck, then go back

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 ∀u

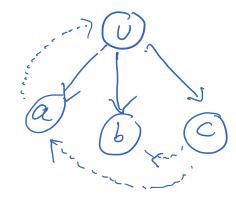
DFS(u):
    explored[u] = 1

for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS(v)
```



parent
In the sense
of DFS bree

Drow out DFS
Tree
Starting at C

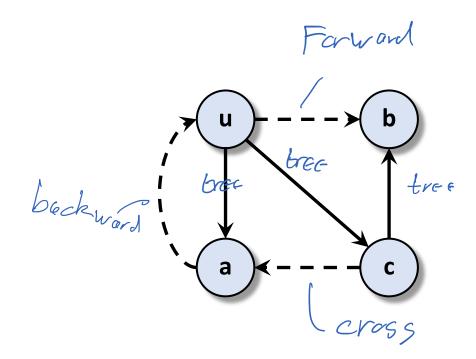


Solid lings form DFS bree

Depth-First Search

DPS bree

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
 - Tree edges: (u, a), (u, c), (c, b)
 - These are the edges that explore new nodes
 - Forward edges: (u, b)
 - Ancestor to descendant
 - Backward edges: (a, u)
 - Descendant to ancestor
 - Cross edges: (c, a)
 - No ancestral relation



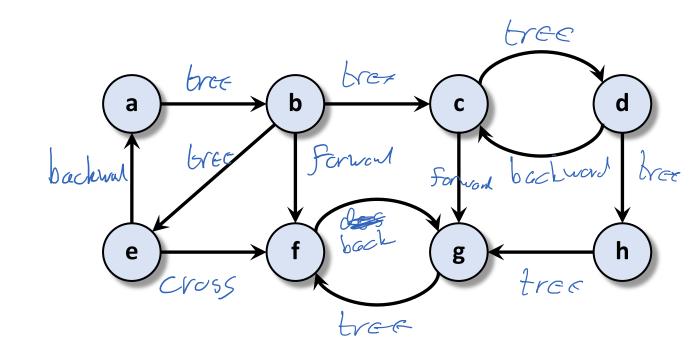
• Each edge has a type:

- Tree edges: (u, a), (u, c), (c, b)
 - Edges that explore new nodes
- Forward edges: (u, b)
 - Ancestor to descendant
- Backward edges: (a, u)
 - Descendant to ancestor
- Cross edges: (c, a)
 - No ancestral relation

Activity

Form DFS tree starting at a

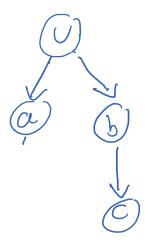
- DFS this graph starting from node a
 - Search in alphabetical order
 - Label edges as { tree , forward , backward , cross}

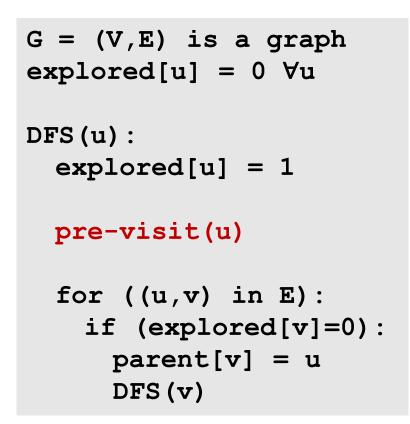


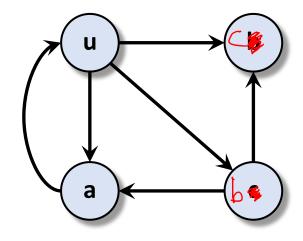
Pre-Ordering

Sortal alphabetrally

 Order the vertices by when they were first visited by DFS







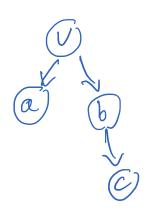
Vertex	Pre-Order
U	1
Q	2
Ь	3
C	4

- Maintain a counter clock, initially set clock = 1
- pre-visit(u):
 set preorder[u]=clock, clock=clock+1

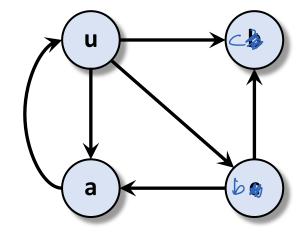
Post-Ordering

 Order the vertices by when they were last visited by DFS

We are done processing
a node once we
process all of its children



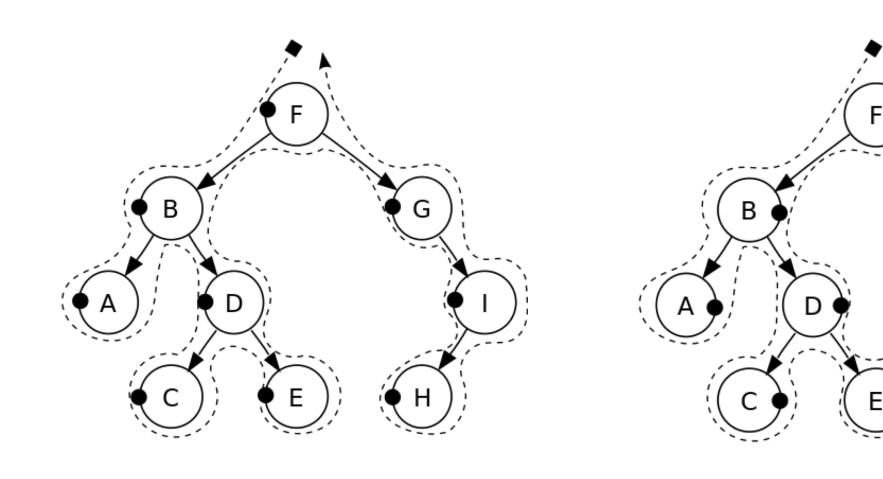
```
G = (V, E) is a graph
explored[u] = 0 \forall u
DFS(u):
  explored[u] = 1
  for ((u,v) in E):
    if (explored[v]=0):
     parent[v] = u
     DFS(v)
 post-visit(u)
```



Vertex	Post-Order
\cup	4
a	1
Ь	3
C	2

- Maintain a counter clock, initially set clock = 1
- post-visit(u):
 set postorder[u]=clock, clock=clock+1

Preorder versus postorder

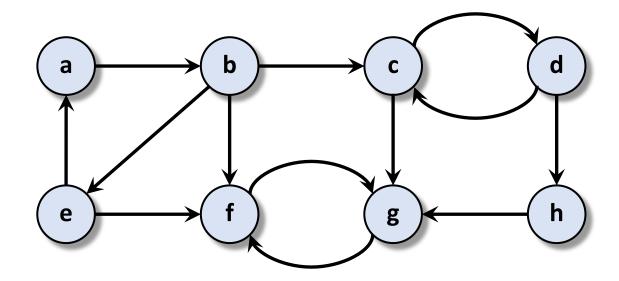


Pre-order: F, B, A, D, C, E, G, I, H.

Post-order: A, C, E, D, B, H, I, G, F.

Activity

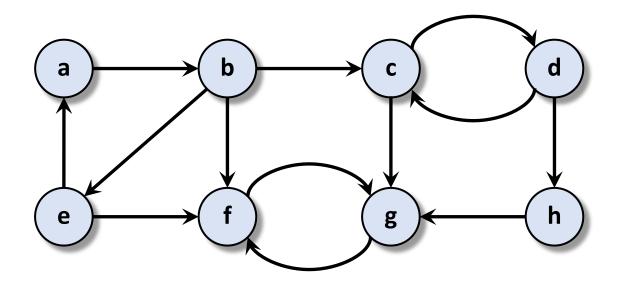
- Compute the **post-order** of this graph
 - DFS from a, search in alphabetical order



Vertex	a	b	С	d	е	f	g	h
Post-Order								

Ask the Audience

- Compute the **post-order** of this graph
 - DFS from a, search in alphabetical order



Vertex	а	b	C	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3