CS3000: Algorithms & Data
Paul Hand

Lecture 13:

* Introduction to Graphs
e Breadth First Search

Feb 25, 2019
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Graphs Are Everywhere

* Transportation networks
 Communication networks
s WWW

* Biological networks

e Citation networks

* Social networks



What’s Next

* Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

* Dijkstra

* Bellman-Ford (Dynamic Programming)
Minimum Spanning Trees:

* Borlvka, Prim, Kruskal
Network Flow:

* Algorithms
¢ Reductions to Network Flow



Graphs: Key Definitions

* Definition: A directed graph ¢ = (I/, E)
* I/ is the set of nodes/vertices
* £ € VXV is the set of edges
* An edge is an ordered e = (u, v) “from u to v”
* Definition: An undirected graph ¢ = (I/, E)
* Edges are unordered e = (u, v) “between u and v”

OBNOENONNO
 Simple Graph: @‘9
* No duplicate edges .'
* No self-loops e = (u, u) O—C) © WO (O



Activity

* How many edges can there be in a simple
directed/undirected graph with n nodes?
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Paths/Connectivity

* A path is a sequence of consecutive edges in E
P = {(u, Wl): (Wl; WZ): (Wz, W3), ey (Wk—li U)}
*P=u—wy—w, —w3— =Wy —V
* The length of the path is the # of edges
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* An undirected graph is connected if for every two @N - ><j
7 N2

vertices u, v € I/, there is a path from u to v

* A directed graph is strongly connected if for every Not cznnecbos
two vertices u, v € V, there are paths from u to v

and from v tou jgf j/%



Cycles

* Acycleisapathv, — v, — - — v, —v; where

k = 3 and v4, ..., vy are distinct
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Activity: how many cycles are there in this graph?




Activity

» Suppose an n-node undirected graph G is connected
@False? G has at least n — 1 edges
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* Suppose an n-node undirected graph G has n — 1 edges
« True/Ralse”? G is connected
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* A simple undirected graph G is a tree if:
* ( is connected
* (G contains no cycles

* Theorem: any two of the following implies the third
* ( is connected
* (G contains no cycles (3)
* G has=n —1 edges
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Trees

* Rooted tree: choose a root node r and orient edges
away from r
* Models hierarchical structure
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Phylogeny Trees

Phylogenetic Tree of Life

Bacteria Archaea Eucarya
Green
Filamentous Myxomycota
Spirochetes bacteria Entamoebae Animalia
Gram Methanosarcina Fungi
positives| methanobacterium Halophiles

Proteobacteria

. Methanococcus
Cyanobacteria

Planctomyces

Bacteroides
Cytophaga

Thermotoga

Aquifex

Plantae
Ciliates
Flagellates

Trichomonads
Microsporidia

Diplomonads



Exploring a Graph
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Exploring a Graph

* Problem: Is there a path from s to t?

* Idea: Explore all nodes reachable from s.
I5 f’ s neb T this 56/5/ then No PEEA e

» Two different search techniques:
* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes
* Depth-First Search: follow a path until you get stuck,
then go back
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Breadth-First Search (BFS)

* Informal Description: start at s, find neighbors of s,
find neighbors of neighbors of s, and so on...

* BFSJT‘QQ where Yo sor ¢
* Ly ={s} -
» L, = all neighbors of L
* L, = all neighbors of L, that are not in {Lq, L1}
* L3 = all neighbors of L, that are notin {Lg, L1, L5}
* Lz = all neighbors of L;_4 that are notin {Lg, ..., Lg_1}
* Stop when L1 is empty
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Breadth-First Search (BFS)

* Definition: the distance between s, t is the number
of edges on the shortest path from s to ¢

* Thm: BFS finds distances from s to other nodes
 L; contains all nodes at distance i from s
* Nodes not in any layer are not reachable from s




Adjacency Matrices

aoplics * The adjacency matrix of a graph G = (V, E) withn
fjf Db nodes is the matrix A[1: n, 1: n] where )2 Enbry
ol" uywn c/(r@;hw‘
Feph N
Graphs Ali ] = 1 (i,j) €EE 2l ot Srom
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E/se Lookup: O(1) time Graph

List Neighbor/s: O(n) time
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Activity

* Determine if there is path between nodes 1 and 2

All omitted entries are zero Lo= $13
L, = $3,53
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Adjacency Lists (Undirected)

* The adjacency list of a vertex v € V is the list A[v]
ofallust. (v,u) € E

ceh chie Kl boice A[1] = {2,3}

Pk gfj Cfsé “ A[2] = {1,3}
A[3] = {1,2,4}
Al4] = {3}

Cost

Space: ©(n + m) Q’G

e Y,
6o Eje Lookup: ©(deg(#) + 1) time

o v

List Neighbors: G)(deg(a\() + 1) time e °



Breadth-First Search Implementation
7N /é%{ Scvree

BFS(G = (V,E), s):
Let found[v] « false Vv, found[s] « true

Let layer([v] « o Vv, layer[s] <0
Let i<0, L, = {s}, T <0
° Can l:s lJ/)tI'Z }7

While (L, is not empty): /@%a cf BFS
Initialize new layer L., bree S L%&w

For (u in L;):
For ((u,v) in E):
If (found[v] = false):
found[v] <« true, layer[v] <« i+l
Add (u,v) to T and add v to L,

i<—i+l

Implements BFS in O(n + m) time
e
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