29 September 2016 Analysis I Paul E. Hand hand@rice.edu

Week 7 — Summary — Completion of Vector Spaces & Open and Closed sets

- 66. A relation, \sim , on a set X is an equivalence relation if it is reflexive, symmetric, and transitive. That is, if for all $a, b, c \in X$
 - (a) $a \sim a$ (reflexivity)
 - (b) $a \sim b \Rightarrow b \sim a$ (symmetry)
 - (c) $a \sim b$ and $b \sim c \Rightarrow a \sim c$ (transitivity)
- 67. Given a set X and an equivalence relation \sim , the equivalence class of an element $a \in X$ is the set of elements equivalent to a. The set of equivalence classes is denoted by X / \sim . We can define operations (e.g. addition, multiplication) on equivalence classes if the operation is well defined (is independent of which representative is chosen from the equivalence classes).
- 68. We can define an equivalence relation between two Cauchy sequences of a (not necessarily complete) normed vector space:

$$\{x_n\} \sim \{y_n\}$$
 if and only if $\lim_{n \to \infty} (x_n - y_n) = 0$

The set of equivalence classes forms a normed vector space.

- 69. \mathbb{R} can be defined as the set of equivalence classes of Cauchy sequences of \mathbb{Q} . This is called the completion of \mathbb{Q} .
- 70. The completion of a normed vector space is defined as the set of equivalence classes of Cauchy sequences of elements in the space. The completion is a complete normed vector space.
- 71. Definition: A subset S of a normed vector space is open if for any $x \in S$, there is an open ball (centered at x) contained within S.
- 72. Definition: A subset S of a normed vector space is closed if its complement is open.
- 73. The finite intersection of open sets is open.
- 74. The arbitrary union of open sets is open.
- 75. The finite union of closed sets is closed.
- 76. The arbitrary intersection of closed sets is closed.
- 77. Definition: A point x is a limit point of a set S if there are points in S that are arbitrarily close to x under the provided norm.
- 78. A set is closed if and only if it contains all its limit points.
- 79. Definition: The closure of a set is the collection of limit points of that set. Write the closure of S as \overline{S} .
- 80. The closure of a set S is the intersection of all closed sets containing S.

- 81. Definition: Let $S \subset T$. The set S is dense in the set T if $T \subset \overline{S}$.
- 82. A function f from one normed vector space to another is continuous if $\lim_{x\to a} f(x) = f(a)$. That is, if $\forall \varepsilon$, $\exists \delta$ such that $||x a|| \leq \delta \Rightarrow ||f(x) f(a)|| < \varepsilon$.
- 83. A function is continuous if and only if the inverse image of any open set is open.