20 October 2016 Analysis I Paul E. Hand hand@rice.edu

Week 10 — Summary — Extensions of linear operators and the definition of integrals as limits of step functions

- 108. Definition: A linear operator (aka function or map) L from a normed vector space to another normed vector space is bounded if $||L(x)|| \le C||x||$ for all x. The constant C is an operator bound for L. The smallest such C is the operator norm of L.
- 109. A linear map from a normed vector space to another normed vector space is continuous if and only if it is bounded (as an operator).
- 110. Let F be a normed vector space, and let F_0 be a subspace. The closure of F_0 in F is a subspace of F.
- 111. Let F be a normed vector space, and let F_0 be a subspace. Let $L : F_0 \to E$ be a continuous linear map from F_0 into the complete normed vector space E. Then L has a unique extension to a continuous linear map $\overline{L} : \overline{F_0} \to E$ with the same operator bound.
- 112. A step function from $[a, b] \rightarrow E$, where E is a normed vector space, is a function of the form

$$f(x) = w_i$$
 for $a_{i-1} < t < a_i$,

where $a = a_0 \le a_1 \le \ldots \le a_n = b$ is a partition of [a, b]. Denote the set of step functions as St([a, b], E).

- 113. The integral of a step function on [a, b] is defined as $I(f) = \sum_{i=1}^{n} (a_i a_{i-1}) w_i$.
- 114. St([a, b], E) is a subspace of the space of all bounded maps from [a, b] into E. The operator I is a linear operator from this subspace to E with bound b a. That is, $||I(f)||_E \le (b a)||f||_{\infty}$.
- 115. The integral operator I can be extended to the closure of St([a, b], E). We will call this closure the space of regulated maps, Reg([a, b], E).
- 116. The closure of St([a, b], E) contains $C^0([a, b], E)$. It also contains the class of piecewise continuous functions.
- 117. Let f be a regulated map on [a, b]. Let $F(x) = \int_a^x f(s) ds$. If f is continuous at the point c, then F is differentiable at c and F'(c) = f(c).
- 118. Let f(t,x) and $D_2f(t,x)$ be defined and continuous for $(t,x) \in [a,b] \times [c,d]$. Then, for $x \in [c,d]$, $\frac{d}{dx} \int_a^b f(t,x) dt = \int_a^b D_2 f(t,x) dt$.