27 August 2015 Analysis I Paul E. Hand hand@rice.edu

Day 2— Summary — Cauchy sequences, Bolzano-Weierstrass, limsup and liminf

- 9. The sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0$, there exists N such that $m, n \ge N \Rightarrow |x_m x_n| < \varepsilon$.
- 10. \mathbb{R} is complete: If $\{x_n\}$ is a Cauchy sequence of \mathbb{R} , then $\{x_n\}$ converges to an element of \mathbb{R} .
- 11. Let $x = \{x_n\}$ be a sequence. A subsequence of x is obtained by keeping (in order) an infinite number of the items x_n and discarding the rest. Two ways to denote a subsequence are $x_{(n)}$ and x_{n_k} .
- 12. Let $\{x_n\}$ be a sequence. The number x is an accumulation point (or point of accumulation) of the sequence if $\forall \varepsilon$ there are infinitely many n such that $|x_n x| < \varepsilon$.
- 13. Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has a convergent subsequence.
- 14. (a) $\limsup\{x_n\}$ is defined as supremum of the accumulation points of $\{x_n\}$. An alternative way to think about it is through $\limsup\{x_n\} = \lim_{n \to \infty} \sup_{m \ge n} x_m$.
 - (b) $\liminf{x_n}$ is defined analogously.