25 August 2015 Analysis I Paul E. Hand hand@rice.edu

Day 1— Summary — Real Numbers

- 1. Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the natural numbers, $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ be the integers.
- 2. Let \mathbb{Q} be the rationals. If $x \in \mathbb{Q}$, then x = n/m, for $n, m \in \mathbb{Z}$ and $m \neq 0$. There are a countable number of rationals.
- 3. Let \mathbb{R} be the reals. There are an uncountable number of reals. Each real number has a decimal representation (possibly two)
- 4. Some axioms of real numbers:
 - (a) $(x + y) + z = x + (y + z) \forall x, y, z \in \mathbb{R}$ (additive associativity)
 - (b) $0 + x = x + 0 \forall x \in \mathbb{R}$ (additive identity)
 - (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x + y = 0 \text{ (additive inverse)}$
 - (d) $\forall x, y \in R, x + y = y + x$ (additive commutativity)
 - (e) $(xy)z = x(yz) \ \forall x, y, z \in \mathbb{R}$ (multiplicative associativity)
 - (f) $1x = x \ \forall x \in \mathbb{R}$ (multiplicative identity)
 - (g) $\forall x \neq 0, \exists y \text{ such that } yx = 1 \text{ (multiplicative inverse)}$
 - (h) $xy = yx \ \forall x, y \in \mathbb{R}$ (multiplicative commutativity)
 - (i) $x(y+z) = xy + xz \ \forall x, y, z \in \mathbb{R}$ (distributivity)
- 5. Completeness axiom of reals:
 - (a) Every non-empty set of reals which is bounded from above has a least upper bound. We denote the least upper bound of a set S by sup(S), which stands for the supremum of S. If S is unbounded from above, then we say that sup(S) = ∞.
 - (b) Similarly, every non-empty set S which is bounded from below has a greatest lower bound, $\inf(S)$, which stands for the infimum of S. If S is unbounded from below, then we say that $\inf(S) = -\infty$.
- 6. Properties of the reals
 - (a) Triangle inequality: For real numbers, $|x + y| \le |x| + |y|$ and $|x y| \ge |x| |y|$.
 - (b) Archimedian property: If $0 \le x \le 1/n \ \forall n \in \mathbb{N}$, then x = 0
 - (c) Density of rationals within the reals: For all $x \in \mathbb{R}$ and $\varepsilon > 0$, there exists $q \in \mathbb{Q}$ such that $|q x| < \varepsilon$.
 - (d) Between two distinct rationals, there is a real. Between two distinct reals, there is a rational.
- 7. The sequence $\{x_n\}_{n=1}^{\infty}$ converges if $\exists a \in \mathbb{R}$ such that for all $\varepsilon > 0 \exists N$ such that $n \ge N \Rightarrow |x_n a| < \varepsilon$. We say that $\lim_{n\to\infty} x_n = a$.
- 8. A bounded monotonic sequence converges.