27 October 2015 Analysis I Paul E. Hand hand@rice.edu

Day 16 — Summary — Equivalence relations

- 94. A relation, \sim , on a set X is an equivalence relation if it is reflexive, symmetric, and transitive. That is, if for all $a, b, c \in X$
 - (a) $a \sim a$ (reflexivity)
 - (b) $a \sim b \Rightarrow b \sim a$ (symmetry)
 - (c) $a \sim b$ and $b \sim c \Rightarrow a \sim c$ (transitivity)
- 95. Given a set X and an equivalence relation \sim , the equivalence class of an element $a \in X$ is the set of elements equivalent to a. The set of equivalence classes is denoted by X / \sim . We can define operations (e.g. addition, multiplication) on equivalence classes if the operation is well defined (is independent of which representative is chosen from the equivalence classes).
- 96. We can define an equivalence relation between two Cauchy sequences of a (not necessarily complete) normed vector space:

$$\{x_n\} \sim \{y_n\}$$
 if and only if $\lim_{n \to \infty} (x_n - y_n) = 0$

The set of equivalence classes forms a normed vector space.