1 October 2015 Analysis I Paul E. Hand hand@rice.edu

Day 10 — Summary — Norms and Inner Products

- 51. A vector space V over the reals is a set that permits addition and scalar multiplication.
 - (a) $(x+y) + z = x + (y+z) \forall x, y, z \in V$
 - (b) $0 + x = x \ \forall x \in V$
 - (c) $\forall x \in V, \exists y \in V \text{ such that } x + y = 0$
 - (d) $x + y = y + x \, \forall x, y \in V$
 - (e) For $x \in V$ and $a, b \in \mathbb{R}$, (ab)x = a(bx), (a+b)x = ax + bx, a(x+y) = ax + ay.
- 52. A norm on a vector space V is denoted by $\|\cdot\|$ and satisfies
 - (a) $||x|| \ge 0$ for all $x \in V$
 - (b) $||x|| = 0 \Leftrightarrow x = 0$.
 - (c) ||ax|| = |a|||x|| for all $x \in V$, $a \in \mathbb{R}$
 - (d) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$
- 53. For finite and infinite sequences x, the ℓ_p norm is $\|x\|_p = (\sum_i |x_i|^p)^{1/p}$. It is a norm for $1 \le p < \infty$. The ℓ_∞ or \sup norm of a sequence x is $\|x\|_\infty = \sup_i |x_i|$.
- 54. For functions $f:\Omega\to\mathbb{R}$, the L_p norm is $\|f\|_p=\left(\int_\Omega|f|^p\right)^{1/p}$. The L_∞ norm is $\|f\|_\infty=\sup_{x\in\Omega}|f(x)|$.
- 55. A norm for $C^p[a, b]$ is given by $||f|| = \sum_{i=0}^p ||f^{(i)}||_{\infty}$.
- 56. Norms can be visualized by their unit ball.