6 November 2014 Analysis I Paul E. Hand hand@rice.edu

Day 19 — Summary — Series within Vector Spaces

- 1. Let $\sum a_n$ be a series of vectors in a complete normed vector space. If $\sum \|a_n\|$ converges, then $\sum a_n$ converges. The series $\sum a_n$ is said to converge absolutely if $\sum \|a_n\|$ converges.
- 2. Let $\sum x_n$ be an absolutely convergent series in a complete normed vector space. Then the series obtained by any rearrangement of the series also converges absolutely to the same limit.
- 3. We say that an infinite series of functions $\sum_n f_n(x)$ converges absolutely on S if $\sum |f_n(x)|$ converges for all $x \in S$. We say the infinite series converges uniformly on S if the sequence of partial sums converges uniformly on S.
- 4. Weierstrass test: Let $f_n \in L^{\infty}$ be such that $||f_n||_{\infty} \leq M_n$ and $\sum M_n$ converges. Then $\sum f_n$ converges uniformly and absolutely. If each f_n is continuous, then so is $\sum f_n$.

Warm up

Converge or diverge

$$\sum_{n=1}^{\infty} \frac{1}{n \log n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n \log^2 n}$$

Eg sinnx convaga in Lo to a conting function (with so slope at x=0

Thm; IF \(\frac{\pi}{\pi} ||a_n|| \loo \text{thin } \(\frac{\pi}{\pi_{=1}} \) \(\frac{\pi}{\pi_{=1}

PFI Let SN= poi ||Sn-Sm||= || \sum_{k=n+1}^{m} a_n || \le \int ||a_n || \\
As \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_{n=1}^{n} \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_{n=1}^{n} \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_{n=1}^{n} \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_{n=1}^{n} \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_{n=1}^{n} \cap \frac{\pi}{\pi} ||a_n || \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_{n=1}^{n} \cap \frac{\pi}{\pi} ||a_n || \\
So \sum_

Does $\sum_{n=0}^{\infty} x^n$ converge uniformly on |X| < 1?

No

Does $\sum_{n=0}^{\infty} x^n$ converge uniformly on $|X| < 1 - \epsilon$?

Yes $\sum_{n=1}^{\infty} x^n$ $\sum_{n=1}^{\infty} (1-\epsilon)^n < \infty$.