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1. Introduction 

An experimental semantic matcher for computer algebra 
systems has been developed. Certain new features make it pas- 
sible to use a rule-based system for tasks which could not pre- 
viously have been done with traditional rule-based matchers. 
The new system is also easier and faster to write for many 
problems than hard-wired code. As an experimental program, 
little attention has been paid to speed, subject to the require- 
ment of human patience that at least several rules per second 
be executed. 

As a demonstration of its power, a differentiation package 
has been written for both partial and total differentiation. The 
emphasis was on functionality, rather than convenient user dis- 
plays. The rules and predicate functions required three pages 
of code. 

Future tests will include an attempt to emulate the higher 
methods of the PRESS system. [l] A working system would 
make available to other computer algebra systems the equation- 
solving abilities of PRESS. 

The current implementation runs either as a stand-alone 
package or as a package in MACSYMA [6]. It contains no 
parser or display package aside from LISP’s own. However, it 
is hoped that the internal representation is sufficiently simple, 
so that it can be easily interfaced to other LISP-based systems 
to take advantage of their parser, display, and built-in algebraic 
routines. 

2. Features of Matcher and Comparison with Some 
Existing Systems 

Features of the matcher include: 
1) individually user-declarable attributes for all functions. 

Current attributes correspond to the abelian group axioms: 
commutativity, associativity, identity, and inverse. The first 
three attributes are the same as discussed by McIsaac (71, where 
commutativity is called symmetry in that article. The matching 
algorithms for handling attributes here are also similar to [7]. 
This is similar to SMP’s [2] properties on symbols. However, 
the attributes in this matcher affect only whether a match 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage. the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

occurs. They do not cause the arguments to be reordered or 
expressions altered in the absence of any rules, as does SMP. 
Michael Genesereth described, a matcher with such attributes 
in an unpublished manuscript [5], but it was not included in 
MACSYMA. 

2) restriction of pattern variables to match expressions 
according to user-defined predicates. For example, the state- 
ment matchvariable(even. (lambda (x), numberp(x) and 
is( x mod 2 - 0))) might be used in conjunction with the 
rule cos (even*var> + 1, where var matches arbitrary expres- 
sion. This is similar to MACSYMA’s matchdeclare property, or 
SMP’s conditions on generic symbols used in patterns. 

3) restriction of function pattern variables to match 
functions according to user-defined predicates. This is 

necessary for such rules as diff(fnc(expr) ,x)+ par- 
tialdiff (fnc (expr)) *diff (expr.x). “fnc” can be declared 
a function pattern variable, which matches any symbol in func- 
tional position, subject to a user-defined matchfunction pred- 
icate similar to the matchvariable predicate in item 2, above. 
This feature does not seem to exist in current matchers. 

4) the ability to define predicates of more than one argu- 
ment associated with more than one pattern variable. These 
are associational predicates. Evaluation of the associational 
predicate is delayed until all pertinent pattern variables are in- 
stantiated. If the matchvariable predicates on the individual 
variables have been satisfied, and the associational predicate 
fails, then the last instantiation of a pattern variable of the as- 
sociational predicate is rejected, and the matcher proceeds as if 
that pattern variable’s matchvariable predicate had failed. For 
example, diff (no-has-var ,var) -+ 0, where an associational 
predicate waits until both nohas-var and var have been instan- 
tiated, and then tests if no-has-var contains var with a custom 
LISP function. Moses’s SCHATCHEN matcher [8] (used inter- 
nally in MACSYMA) has a similar facility, “loop”. By declaring 
the appropriate functions such as ‘+” to be commutative, and 
declaring its identity, 0, the associational predicate will exhibit 
the same behavior as “loop” facility in testing the associational 
predicate on all combinations of instantiations of terms which 
satisfy the individual matchvariable predicates. MACSYMA’s 
user-level pattern matchers do not support this delayed eval- 
uation. The manual on SMP is unclear as to whether this is 
supported. 

5) evaluation of subexpressions in the replacement of the 
pattern within the environment existing at the time of the 
match, including pattern variable bindings. For example, 
a + a+1 and a -B match-eval(a+l) would differ in that 4 
would transform to 4+1 under the former rule, and 5 under 
the latter rule. A second construct, match-evalllplicing acts 
similarly, but splices a list into a list of arguments. For ex- 
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ample, if “+” had not been declared associative, one might 
want a rule: ‘+‘(‘+’ (restafargs) , rest_ofargsZ) + 

‘+‘(match-eval-splicing(rest-ofargs. rest-ofargs2)). 
The pattern variables rest-ofargs are rest pattern variables dis 
cussed in item 6. match-eval can be especially important to 
manually control resimplification on a rule by rule basis if full 
resimplification of expressions after every rule application is not 
desired. The facility, match~val, is also provided in Moses’s 
SCHATCHEN matcher (81 under the name eval. 

6) “rest” pattern variables able to match several argu- 
ments, similarly to the &rest lambda-list keyword in COM- 
MON LISP and SMP’s multi-generic symbols for patterns. A 
rest pattern variable matches a sublist of the list of arguments 
of a function. By creating a new list to which the rest pattern 
variable is instantiated, this facility can be thought of as a par- 
tial inverse to matchevalsplicing, which splices out one list. 
For an example, see the discussion of the previous item. A con- 
cept similar to rest pattern variables is discussed by Mclsaac [7] 
under the name, Uellipsis”. 

7) association of flags with every expression and subex- 
pression. This allows information to be cached, allowing more 
efficient rule-based systems. In Backus-Naur form, the internal 
form of an expression operated on by the matcher, is: 
expression : : - 

LISPAtom 1 ((function {flag}‘) {expression}*) 
The {...}’ indicates zero or more of the item in braces. This 
is similar to MACSYMA’s internal form for general represen- 
tation. An example of its use might be to cache information 
about an expression. For example, the expression matched to 
nohas-var in item number 4, above, might have that infor- 
mation cached so that it could be retested later, if the same 
instantiation was attempted later. 

8) grouping of rules into rule-sets which can be separately 
enabled, disabled, traced, and untraced. 

9) utilities for easily defining, obtaining, and removing 
rules, attributes, and match predicates for variables and func- 

3. Example: Partial and Total Differentiation 

The package for partial and total derivatives requires about 
30 rules and 80 lines of code in Franz LISP. The code defines 
the matchvariable, matchfunction, and associational predicates. 
The package was completed in less than two days. This was 
facilitated by the availability of tracing of rules for debugging. 

The code embodies partial and total differentiation, user- 
defined derivatives (similar to “gradef’ in MACSYMA), and 
handling of dependencies of variables (similar to ‘depends” in 
MACSYMA). It handles both explicit functions such as f(x), 

and implicit functional dependencies declared by such state- 
ments ae depends(y,x). The package wss used with MAC- 
SYMA to take advantage of MACSYMA’s parsing, display, and 
simplification of expressions. Simplification of expressions can 
also be handled in a rule-based manner, but for reasons of ef- 
ficiency, one might prefer to carry out low-level simplifications 
with hard-wired code. 

Its use is shown below in a mode in which a single rule 
at a time is applied by the match function. The functions, pd 
and td, symbolize partial and total differentiation, respectively. 
The symbol ‘%” refers to the expression on the immediately 
preceding line, beginning with “(d<number>)“. 

(~71) grader (f (xl, iprime( ; 
/* user-defined gradient of inc.. f is iprime */ 

(d71) f (xl 

(~72) matchftdff (y**2) .y)) : 
a 

cd791 2 y fprime(y 1 

(~81) match(pd(f (y**2>)) ; 
/* pd(f(y**2)) is different from tdff(y**2).y) */ 

2 

cd811 fprimefy 1 

(~82) depends(y,[eps.kl,k2],eps.[kl,k2l,kl.3); 
/* y depends on eps, kl. and k2; etc. */ 

Cd821 Cyfeps, kl, k2). epsfkl, k2), kI(311 

(c89> match(td(y.e)) ; 
/* chain rule for partial derivatives */ 

dkl dy deps dkl dy 
(dQ2) --- --- + --_- --- ---- 

de dkl dkl de deps 

(~93) match(pd(y,kl)); 
/* single partial derivative */ 

(d93) 
W 
_-a 

dkl 

4. Previous Work 

The matchvariable concept used here is inspired by the 
matchdeclare concept in Fateman’s matcher for general MAC- 
SYMA expressions. [3] Many newer features have been added in 
order to allow more complicated bodies of mathematical knowl- 
edge to be easily expressed in a rule-based manner. The previ- 
ous examples are some cases in point. 

Michael Genesereth [g] had previously written a matcher 
using Fateman’s matchdeclare concept in which one could de- 
clare addition and multiplication to have any combination of 
the properties commutative, associative, identity, and general 
field axioms. This is similar to our attributes, but they were 
not extended to apply to arbitrary functions. The previous 
examples stand here, also, as caees where the newer features 
described in this paper would be desirable. 

SMP [2] and Mclsaac [7] use properties that perform some 
of the same functions es our attributes. Their properties include 
Flat, Comm, and Dist (associative/symmetric, commutative, 
and distributive). Some of SMP’s properties, such as dist, are 
implemented as rules in our system. Mclsaac contains ellipsis 
and SMP contains multi-generic symbols of the form $$var, that 
serve a similar purpose to our rest arguments. Certain of our 
features (e.g.: matchfunction, matcheval, rule-sets) have no 
analogue in those systems. 

An early rule-based computer algebra system had been de- 
signed by J. Fenichel. [4] He used a purely syntactic matcher 
and rules for commutativity, associativity, and more com- 
plex axioms, in order to algebraically simplify expressions. 
Fenichel’s system performed correctly but slowly, because the 
basic axioms (our attributes) were expressed by rules. Thus 
simplifying (a+(b+(c+d))) to (((a+b)+c)+d) required several 
applications of the associative rule, possibly including back- 
tracking. The philosophy of this matcher differs in incorpo- 
rating the commonly used axioms in our system as separate 
attributes, and leaving only the “special-case” rules for the 
matcher. 

A more recent example of a rule-based computer algebra 
program is Bundy’s PRESS program for elementary algebra. 
[l] This is of special interest since it also has the goal of 
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expressing a large body of mathematical knowledge in a man- 
ner depending heavily on rules. Some of the rules of PRESS 
are being implemented in this matcher to gain experience on 
the strengths and weaknesses of using this matcher. The more 
important test, to be carried out, is to emulate in this matcher 
some of PRESS’s higher level methods, which had not been 
implemented in rule-based form. The tendency of PRESS has 
been to use rules at the lower levels, and nse hard-wired code 
at the higher levels which are able to use the lower level rules. 
The interest in this work is to incorporate Ihigher constructs in 
the rule-based matcher, so as to directly express higher-level 
knowledge in a rule-based form. 

5. A Matcher aa a Programming Language 

The combination of the rule-based and procedural style can 
be more advantageous than either one alone for programming 
mathematical algorithms. Where the rule-based paradigm is 
natural, its extreme modularity causes the resulting program 
to be easier to understand, debug, and maintain. By making 
use of the matcher, a rule-based program will often be shorter 
than its procedural counterpart. Yet procedural programs are 
more natural in contexts where the algorithm is most naturally 
expressed in a procedural manner, or the greater efficiency of 
direct coding is required. 

The coexistence of the two styles is especially important 
for low-level manipulations which are more efficiently done by 
standard LISP code. Any LISP program may call the matcher, 
and the matcher may call any LISP program. An example fol- 
lows to demonstrate how a LISP program may be incorporated 
in the rule-based system. 

defrule(univorsal_expr. match-eval(replacement)) 

(matchvariable ‘$universal-expr #‘universal-program) 
(declare (special replacement)) 
(defun universal-program (arg) 

(cond ((eq *total-target* arg) 
(setq replacement 

(arbitrary-program arg)> t) 
(t nil))> 

The condition (eq *total-target* arg) is required to 
guarantee that the subexpression being matched by univer- 
salsxpr is the full top-level expression. With that sole condi- 
tion satisfied, arbitrary-program is applied to the target and 
the result bound to the special variable, replacement. The 
match-eval then returns the value of replacement. 

The effect of subroutines can be obtained by the matcher 
changing the active rule-set, and declaring a rule in the new 

active rule-set which deactivates it, and reactivates the old rule- 
set when no more matches apply in the new rule-set. An al- 
ternative technique is for the matcher to recursively call itself. 
Procedural algorithms with several steps can also be emulated 
by having each rule-set deactivate itself, and activate the next 
rule-set when no more rule applications are possible. 

6. Future Work and Conclusions 

Experience with incorporating other bodies of mathemati- 
cal knowledge will determine the strengths and the limitations 
of this style of programming. The two days to program and 
debug the differentiation package discussed here, demonstrates 
the usefulness of the matcher for a domain in which the rule- 
based paradigm is natural. One would ultimately like to use the 
matcher to create large mathematical expert systems to accom- 
plish some of the same tasks for mathematics that traditional 

expert systems have accomplished for other domains. One is 
not restricted to using only the rule-based approach since the 
two programming paradigms can coexist. 

Certain restrictions are in effect in the current matcher. 
The interaction of multiple rest arguments with matchvariable 
properties of the rest arguments can be ill-defined. Matchvari- 
ableassoc has not been fully tested with commutative and as- 
sociative functions. These restrictions may be lifted in future 
versions. 

A possible future application involves keeping a subset of 
the rules in restricted form so as to allow automatic derivation of 
useful, new rules to be installed. The Knuth-Bendix completion 
algorithm is one such technique which has been used for rewrite 
rules. The feature of interchangeability of program and data is 
already familiar to users of LISP and PROLOG. 

In line with the expert systems paradigm, this matcher 
is expected to be most useful in mathematical domains with 
numerous algorithms, heuristics, or rules-of-thumb, which are 
not expressed easily in the language of an existing computer 
algebra system. Examples might include asymptotic analysis, 
transforming expressions to self-adjoint form, transformation 
of differential equations to numerical FORTRAN programs, or 
specialized domains for which the effort of writing a full com- 
puter algebra package is not worthwhile. 
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