
Debugging MPI Implementations via
Reduction-to-Primitives

Gene Cooperman
Khoury College of Computer Sciences

Northeastern University
Boston, USA

gene@ccs.neu.edu

Dahong Li
MemVerge, Inc.

Milpitas, CA, USA
dahong.li@memverge.com

Zhengji Zhao
NERSC

Lawrence Berkeley National Laboratory
Berkeley, USA
zzhao@lbl.gov

Abstract—Testing correctness of either a new MPI imple-
mentation or a transparent checkpointing package for MPI is
inherently difficult. A bug is often observed when running a
correctly written MPI application, and it produces an error.
Tracing the bug to a particular subsystem of the MPI package
is difficult due to issues of complex parallelism, race conditions,
etc. This work provides tools to decide if the bug is: in the
subsystem implementing of collective communication; or in the
subsystem implementing point-to-point communication; or in
some other subsystem. The tools were produced in the context
of testing a new system, MANA. MANA is not a standalone
MPI implementation, but rather a package for transparent
checkpointing of MPI applications. In addition, a short survey
of other debugging tools for MPI is presented. The strategy of
transforming the execution for purposes of diagnosing a bug
appears to be distinct from most existing debugging approaches.

Index Terms—MPI, supercomputing, debugging, MANA,
transparent checkpointing

I. INTRODUCTION

This work provides two debugging tools that have been ex-
tensively used in debugging MANA-2.0 [1]. MANA-2.0 (more
generally referred to as MANA here) is a production-ready
package for transparent checkpointing of MPI applications.
The tools are equally useful in debugging both MANA and
arbitrary MPI implementations. For this reason, the rest of the
paper will frequently refer to “a new MPI implementation”.

The original and primary context for this work is MANA:
a checkpointing package that operates by transforming the
execution of an MPI application through wrappers around MPI
functions. The combination of MANA on top of a standard
MPI implementation, acts as a “new MPI implementation”.

MANA’s Requirements to Transform MPI calls:
Since the tools were motivated by debugging MANA, we
pause to describe the architecture of MANA. The architecture
of MANA is based on the idea of split processes. In split
processes, two programs are loaded into the address space
of a single process. One program (upper half) is the MPI
application (linked to a MANA library), and the second pro-
gram (lower half) is a small MPI application that includes an
actual MPI library. The MANA library includes stub functions
for each MPI function, and each stub function calls one or
more actual MPI functions in the small MPI application. On

checkpoint, only the memory of the MPI application is saved.
On restart, a new MPI application is run, and that application
restores the MPI application to its original location in memory.
See Section II and especially Figure 1, for further details of
the MANA architecture.

The split process technique was developed in order to save
the memory of an MPI application, while at the same time
avoiding the need to save the memory of the MPI library. This
is important since the MPI library intensively uses hardware
associated with the network and possibly a high-performance
network switch. Saving the state of the a network switch, and
possible some kernel modules, would be a difficult proposition.

The architecture of MANA requires that at the time of
checkpoint, no process must be in the middle of a call to
MPI. (The memory of the small MPI application (lower half)
is not saved during a checkpoint. It will be replaced by a
fresh process on restart.) This forces the MPI wrappers of
the MANA library to replace the original MPI call by one
or more alternate MPI calls to the actual MPI library. For
example, the MANA library wrapper function for MPI Wait
calls the MPI Test of the actual MPI library in a small
loop. A pending checkpoint is permitted to proceed only after
MPI Test returns, so that no call frame on the stack refers to
the lower half program.

Hence, one of the most difficult intellectual challenges of
MANA is to re-organize the large family of MPI calls around
a restricted set of calls to be passed to the actual MPI library:
while maintaining efficiency; and while guaranteeing that no
MPI process is blocked in a call to the lower half at the time
of checkpoint. Thus, MANA is implicitly translating the MPI
calls of the original application to an alternate sequence of
MPI calls to the actual MPI library.

Motivation for Tools for Reduction-to-Primitives:
The difficulty of developing a robust checkpointing algorithm
in MANA can be understood by analogy to developing a
new optimizing compiler. Both endeavors are concerned with
translating high-level code representations into lower-level ex-
ecutions. Both endeavors require subtle algorithms to preserve
the high-level semantics when translated to a lower level.
checkpoint-restart boundary. As with optimizing compilers,
this implies myriad corner cases, whose bugs can only be

uncovered by testing on diverse real-world software.
There are two tools presented here:
Collective-to-P2P: This tool translates each MPI collective

communication call to a sequence of point-to-point
calls. This can be done for all collective calls or a
subset of the collective calls.

Deterministic-P2P: This tool has two parts. First, in each
process, it keeps a log of the metadata of all messages
received . Second, when applied in MANA, the
log is “turned on“ after resuming from a check-
point. Then, after restart, any ambiguities due to
MPI_ANY_SOURCE and MPI_ANY_TAG are re-
solved by choosing the same tag and source as
displayed in the log.

The second tool, Deterministic-P2P, is closely related to
communication determinism [2]. Communication determin-
ism is well-defined only when all collective calls are re-
duced to point-to-point calls. In this case, the execution is
communication-deterministic if the result is equivalent to a
deterministic ordering of MPI messages being received. In the
case of non-blocking receives, the message is received by a
call to MPI Wait or MPI Test.

Note that in defining communication determinism, Cappello
et al. state that “We assume in this paper that collective com-
munications are implemented atop point-to-point communica-
tions and the implementation is deterministic.” [2, Section 2].
The current work provides an easy way to enforce that a target
application implements collective communication atop point-
to-point communication.

Deterministic-P2P is especially useful in the checkpointing
context. It compares execution during resume (of the same
process after a checkpoint) and restart (a new process from
a checkpoint image), to see if the checkpointing package
preserves communication parallelism.

With respect to Deterministic-P2P, note that this can be used
in debugging two distinct cases:

a) It can be used to test if a target MPI application run-
ning under a new MPI or checkpointing implementation
produces the same result aside from floating point error.

b) It can be used to test if a target MPI application running
under a new MPI or checkpointing implementation pro-
duces exactly the same result (including the low bits of
floating point values).

The distinction arises because floating point computer arith-
metic is not commutative. As an example, if an MPI pro-
cess receives floating point values from four neighbors using
MPI_ANY_SOURCE and adds those values, the resulting sum
will be different, depending on the order in which the four
values were received.

Novelty:
The novelty of this work is as follows.

1) The first debugging tool, Collective-to-P2P, allows a
target MPI application to be executed in a special mode,
in which all or a selected subset of MPI collective
communication calls are replaced by point-to-point calls.

If a bug disappears when the target MPI application runs
with this tool, then this shows that the bug is associated
with one or more of the selected MPI collective com-
munication calls. This allows one to trace the bug to
one of: a transparent checkpointing package; an MPI
implementation; or the target MPI application itself.

2) The second debugging tool, Deterministic-P2P, allows a
target MPI application to be executed in a special mode,
in which a form of communication determinism is en-
forced. It can force a second execution of a target appli-
cation to bind MPI_ANY_SOURCE and MPI_ANY_TAG
to the same source and tag as the first execution. This
enforces communication determinism between the two
executions (the second execution produces the same
result as the first execution). This is useful to determine
if a new MPI implementation or checkpointing imple-
mentation preserves the deterministic results seen in an
earlier execution.

3) A target MPI application can be run using the two
tools in combination. In this mode, the Collective-to-
P2P tool is used as a prerequisite to the Deterministic-
P2P tool, in order to isolate questions of communication
determinism.

Organization of This Work:
This work is organized into the following sections. Section II
briefly describes the underlying split-process design of the
original MANA, and then provides further details of how
wrapper functions are used to translate MPI calls. Section III
describes in detail the two debugging tools and how they are
used. Section IV presents an experimental evaluation of the
two tools for debugging. Section V presents related work.
Finally, Section VI is the conclusion.

II. BACKGROUND

MANA (MPI-Agnostic Network-Agnostic transparent
checkpointing tool) is a previously developed package
for checkpointing MPI applications [3]. A newer version,
MANA-2.0 [1], has been developed for production use in
supercomputing. MANA uses the idea of split processes.

A. Split-processes

In brief, the key idea of a split-process approach is to load
two independent programs into the virtual memory of a single
process. Because they are contained within the same virtual
memory, a function from one program (typically the “upper-
half” program) may call a function of the other program
(typically the “lower-half” program) — so long as the address
of the lower-half function is known to the upper-half function.

The upper-half program is the MPI application program,
dynamically linked with a “stub” MPI library. The “stub”
MPI library consists of wrapper functions around each MPI
call, as described in the introduction. The wrapper may call
one or more lower-half MPI functions in the actual MPI
library. Finally, the lower-half program consists of a small MPI
application linked to the actual MPI library, which also links

LOWER HALF

 HELPER

libcMPI APPLICATION

libmpi libc

GNU link map (doubly linked list) of dynamic libraries

GNU link map (doubly linked list) of dynamic libraries

network and kernel
device drivers

UPPER HALF:

LOWER HALF:

Array of function pointers into libmpi

(MANA)

libmpi
stub

Fig. 1. MANA implementation: split processes

to the necessary libraries. See Figure 1 for a visual description.
For simplicity of exposition, the figure shows the special case
where each MPI wrapper function calls only a single MPI
function in the lower half.

For a deeper description of split processes, see the original
paper of Garg et al. [3].

B. Communication determinism and send determinism

We assume in this work that communication consists solely
of MPI collective communication and point-to-point commu-
nication. One of the novelties of this work is the ability to
transform the execution of an MPI application from one that
uses both collective and point-to-point communication to one
that uses only point-to-point communication. This allows us
to consider communication determinism within a modern MPI
implementation.

Note that Cappello et al. [2] had argued for studying
communication determinism directly within a point-to-point
context. They argued for this, because the MPI implementa-
tions that they were familiar with in 2010 had implemented
collective communication atop point-to-point communication,
as seen in this quote.

We assume . . . that collective communications are
implemented atop point-to-point communications
and the implementation is deterministic. The last
condition is satisfied by the MPI implementations
we are familiar with. Therefore, w.l.o.g., we can
restrict our attention to point-to-point communica-
tion. [2, Section II]

However, there is no guarantee that collective communica-
tions are implemented atop point-to-point communications in
a modern MPI implementation. For example, the MPI library
may use a network switch to accelerate performance in hard-
ware. One can easily imagine such a case for MPI Reduce,
or for MPI Alltoall.

It is for this reason that the current work requires a first
tool, Collective-to-P2P, which translates collective operations
into multiple point-to-point operations through a very simple
algorithm (e.g., no broadcast trees, no scan algorithms for
MPI Reduce). The simple Collective-to-P2P tool of this work
has better guarantees of correctness, because each collective

operation is implemented by a routine of at most 34 lines,
which can be informally verified “by eye”.

Related to communication determinism is the concept of
send determinism [4]. In send-determinism, if the same code
is run twice with the same input, then each MPI process is
guaranteed to execute the same sequence of MPI Send calls
(with the same parameters) over the two runs.

Cappello et al. studied how common it is that MPI ap-
plications are already structured to support determinism [5].
They analyzed 27 application and benchmark codes used at
NERSC. The study showed that 11 were communication-
deterministic, one was completely deterministic, and 13 were
send-deterministic.

The intuition for communication determinism versus send
determinism can be understood by reviewing a relaxation
equation in partial differential equations modeling an elastic
membrane. The membrane is spread above an x-y plane, and
the height of the membrane at an (x, y) coordinate is the z
coordinate.

y

z

x

Fig. 2. A physical membrane is simulated by an x-y grid. At each intersection
point, the z coordinate represents the height of the membrane. In a relaxation
equation, at each iteration, the z coordinate is changed to be the average of
the four nearest neighbors.

Figure 2 shows such a membrane. If each grid point is
stored in a separate MPI process, then at each iteration, an
MPI process must receive the z value from its four nearest
neighbors, and set the new local z value to the average of the
four neighbors. This can be done by:

for (int i = 0; I < 3; i++) {
MPI_Recv(..., rank[i], ...);

}

or by:

for (int i = 0; I < 3; i++) {
MPI_Recv(..., MPI_ANY_SOURCE, ...);

}

The former code guarantees communication determinism,
since the z values from the neighboring ranks (given by
rank[i]) are received in a prescribed manner. The latter
code guarantees only send determinism. If the four z values
are averaged by adding them in the order in which they are
received, then the latter code may produce slightly different
averages of the z values, since the ordering will be different,
and computer addition is not commutative.

In Section III-B, the tool Deterministic-P2P will be de-
scribed. If the MPI target application (or the result of trans-
forming the MPI code) causes two runs to vary in the small
bits of the floating point numbers, then one suspects that this is
due to send determinism (the later MPI code of the example).

This can be tested by applying the Deterministic-P2P tool.
If this causes the variation in the low bits of floating point
numbers to disappear, then this shows that the variation is
due to an instance of send determinism. The tool enforces
communication determinism in the resulting run. But if the
low bits of floating point numbers continue to vary, then this
shows that the variation is due to some race condition (a bug)
in the MPI implementation itself.

III. TWO DEBUGGING TOOLS

This section is divided into three parts. A description is
provided for the Collective-to-P2P tool, for the Deterministic-
P2P tool, and finally a motivation for the combined use of
Collective-to-P2P and Deterministic-P2P.

A. Collective-to-P2P: Reduction of Collective Communication
to Point-to-Point

When seeing a bug in an MPI execution, the first question
that a developer usually asks him or herself is whether the bug
is related to the use of MPI collective communication calls.
This could be related to bugs in the MPI target application,
the MPI implementation itself, or a transparent checkpointing
package, such as MANA. The solution presented here is to
insert an additional library in the library search path that
redefines each of the collective calls to themselves make calls
to point-to-point calls.

In the case of MANA, the file
https://github.com/mpickpt/mana/blob/main/mpi-proxy-split/
mpi-wrappers/mpi collective p2p.c
redefines the functions MPI Barrier, MPI Bcast, MPI Gather,
MPI Gatherv, MPI Scatter, MPI Scatterv, MPI Allgather,
MPI Alltoall, MPI Alltoallv, MPI Alltoallw, MPI Reduce,
MPI Allreduce, MPI Reduce scatter, MPI Ibcast,
MPI Igather, MPI Iallgather, MPI Ialltoall, MPI Ialltoallw,
MPI Ireduce, MPI Iallreduce, MPI Ireduce scatter, and
MPI Iexscan. This subset of all collective functions was
chosen according to which calls occur commonly in MPI
applications.

The non-blocking (asynchronous) collective calls are imple-
mented by calling the non-blocking function

MPI_Ibarrier(MPI_COMM_SELF, request)
after which the blocking version of the MPI collective call
is executed. The call to MPI Ibarrier forces the non-blocking
collective call to block until all MPI processes have “arrived”.
At that point, the corresponding request is rapidly completed
by MPI Ibarrier, and the remaining blocking version of the
collective call is then valid. See the next figure as an example.

int MPI Ireduce(const void* sendbuf, void* recvbuf,
int count, MPI Datatype datatype, MPI Op op,
int root, MPI Comm comm, MPI Request *request) {

MPI Ibarrier(MPI COMM SELF, request);
return MPI Reduce(sendbuf, recvbuf, count,

datatype, op, root, comm);
}

In addition to obvious implementations using MPI Send
and MPI Recv, additional code is added to handle the pa-
rameter MPI IN PLACE.

Finally, since each MPI function is defined individually,
and since these definitions shadow the definition of the MPI
library, it is easy to selectively re-define some collective
communication functions, but not others. In this way, one can
pin down a particular MPI collective communication function
that is causing a bug.

B. Deterministic-P2P: Reduction of Parallel Point-to-point
Communication to Deterministic Point-to-point

The Collective-to-P2P tool can be used either to convert all
MPI collective calls to point-to-point, or else to selectively
choose just some MPI collective calls and convert them to
point-to-point. If one of these transformations causes a bug
to disappear, then this shows that there is a bug in one
of the implementation of the MPI collective call that was
transformed.

Thus, the Collective-to-P2P allows us to rule out a bug in the
implementation of the MPI collective calls. It remains to trace
a bug found in the output of an MPI execution back to the MPI
implementation. This section provides a tool, Deterministic-
P2P, to help find a possible bug in the implementation of the
point-to-point layer.

In employing this tool, we usually use it in combination
with the Collective-to-P2P tool. This simplifies the debugging
task. It effectively transforms the target MPI application into
an application that employs only the point-to-point calls for
communication, and does not use any MPI collective calls.
(We also assume that, like most MPI applications today, the
MPI one-sided operations are not being used.)

The Deterministic-P2P tool is intended for a particular class
of bugs. It is assumed that either the entire application is
supposed to be communication-deterministic, or else some
portion of the execution. For simplicity, we assume that the
entire MPI application is intended to be communication-
deterministic. In particular, VASP [6], [7] is an example of
a large, sophisticated application that obeys communication-
determinism.

See Section II-B for background on communication de-
terminism. In particular, note the difference between send
determinism and communication determinism, as described
in that section. By employing the Deterministic-P2P, one can
distinguish between: a natural send determinism in the MPI
code (or in the internals of the MPI implementation); and a
bug in the MPI implementation itself, due to a race condition.

The methodology in implementing Deterministic-P2P is to
use a log-and-replay strategy. During logging, an MPI receive

https://github.com/mpickpt/mana/blob/main/mpi-proxy-split/mpi-wrappers/mpi_collective_p2p.c
https://github.com/mpickpt/mana/blob/main/mpi-proxy-split/mpi-wrappers/mpi_collective_p2p.c

call binds the MPI wild cards to the actual tag and rank
from which the receive occurred during logging. Later, during
replay, the MPI receive call is re-executed, but this time with
the original MPI tag and rank, rather than the MPI wild
card. This guarantees determinism in comparing the original
execution, which logs the actual tag and rank in the execution,
and the second execution (using replay).

In detail, the workflow proceeds as follows:
MANA_P2P_LOG=1 mana_launch -i SECONDS ...

mpi_executable
mpirun mana_p2p_update_logs
MANA_P2P_REPLAY=1 mana_restart ...

--restartdir ./DIR
There is one log created per MPI process. That log is

modified by mana_p2p_update_logs, so as to prepare
it in the correct format for mpi_restart.

As described in the introduction, the investigation was
based on MANA, with checkpoint/restart. However, there is
nothing in this architecture that would prevent this software
from being adapted to use with a standard MPI library (but
without MANA). In that case, we would replace each of
mana_launch and mana_restart by a simple call to
mpirun. This would allow us to execute a second run in a
deterministic mode in which MPI wildcards (MPI ANY TAG
and MPI ANY SOURCE) were replaced by the actual tag and
source, as determined in the log.

An additional feature of the log is that during logging, it
records an exclusive-or of the bytes of MPI message that is
received. Then, during replay, it verifies that the message that
is received has the same exclusive-or as the value recorded
in the log. This provides further guarantees that the MPI
(or MANA) implementation is not mistakenly accepting a
message on replay that has the correct metadata, but the wrong
message body.

C. Combining Collective-to-P2p with Deterministic-P2P: Mo-
tivation

The primary goal of combining the Deterministic-P2P tool
with Collective-to-P2P is to analyze a more unusual type of
bug. Suppose target MPI application is written so as to be
deterministic. If it is run twice, then it will report the same
output in both runs. This is a feature of some scientific appli-
cations. Suppose a new version of the code is a performance
optimization over the old version, but it is intended to produce
the same output. This constraint can be verified most easily, if
it is guaranteed that two runs of the same version of the code
will produce exactly the same output.

Next, suppose that this is satisfied on a reference MPI
implementation, but not on a new MPI implementation. One
then wishes to determine the cause of the lack of determinism.
A first step is to enforce communication determinism, as
described earlier. Hence, in the first run, logging is employed,
and in the second run, replay from the log is employed; as
described in the previous subsection. If determinism can be
enforced by this tool, and yet there is some variation in the
output from one run to the next, then this proves that there

is a flaw in the MPI implementation that is inserting non-
determinism.

Many MPI implementations essentially implement collec-
tive MPI calls in a routine consisting solely of MPI point-to-
point calls. However, the logic of that internal transformation
may be complex, due to the use of broadcast trees, scan
operations (e.g, for MPI Reduce), and other complex data
structures. Such implementations may be error-prone. Even
worse, such implementations are likely to use MPI wild cards
(e.g., MPI ANY TAG, MPI ANY SOURCE) for greater par-
allel efficiency.

Unfortunately, such use of wild cards in internal implemen-
tations of MPI collective calls would force us to abandon
any absolute claims to determinism. The internal use of
MPI ANY SOURCE, for example, implies that there is a
race that will invalidate any claim to communication de-
terminism, and may possibly even invalidate any claim to
send determinism. Such an MPI implementation “poisons”
the environment in using the second tool, Deterministic-P2P.
The goal of Deterministic-P2P is to determine whether the
MPI target application maintains its guarantee of deterministic
execution. But if a flawed MPI implementation adds some
non-determinism through its internal use of MPI wild cards
in its implementation of collective calls, then it is impossible
to distinguish whether a flawed non-deterministic MPI imple-
mentation is adding non-determinism in the collective layer or
in the point-to-point layer.

int MPI Bcast(void* buffer, int count, MPI Datatype datatype,
int root, MPI Comm comm) {

PROLOG Comm rank size;
if (rank == root) {

int i;
for (i = 0; i < size; i++) {

if (i != root) {
MPI Send(buffer, count, datatype, i, 0, comm);

}
}

} else {
MPI Recv(buffer, count, datatype, root, 0, comm,

MPI STATUS IGNORE);
}
return MPI SUCCESS;

}

Fig. 3.

The benefit of the current approach, using Collective-to-
P2P, is that the wrapper function employs a communication-
deterministic implementation of a collective call that also fits
on a single screen. Rather than trust a possibly flawed MPI
implementation, one can instead trust a small wrapper function
that directly translates a collective call to a point-to-point call
in a deterministic manner. The correctness of this wrapper
function can be informally debugged “by eye”, by inspecting
that single screen of code for the small wrapper. This produces

confidence that the Collective-to-P2P tool is not the cause
of the non-determinism. Hence, the search for an incorrect
insertion of non-determinism can be restricted to the point-to-
point layer of the MPI implementation.

The lines of code needed to implement an easy-to-check
collective call using point-to-point calls varies from 15 lines
for MPI Bcast1 (see Figure 3) to 34 lines of code in the worst
case (MPI Alltoall).

IV. EXPERIMENTAL EVALUATION

All experiments were run on Cori, a Cray XC40 system
at NERSC. Cori contains two types of compute nodes, dual-
socket Intel Haswell and single-socket KNL nodes, intercon-
nected with Cray Aries network. Each Haswell node has 32
cores (64 hardware threads) running at 2.3 GHz, and 128 GB
DDR4 2133 MHz memory; each KNL node has 68 cores (272
hardware threads) running at 1.4 GHz, and 96 GB DDR4
2400 MHz memory. Cori runs Cray Linux environment version
7.0.UP03 with Linux kernel version 5.3. All experiments were
run on Cori Haswell nodes, and used NERSC’s community file
system based on IBM’s Spectrum Scale for I/O.

The version of MANA that was used is commit 507187
(Sept. 6, 2022), found as open source on the main branch,
at https://github.com/mpickpt/mana. The version of MANA
used at the time of writing was based on a “hybrid two-
phase commit” algorithm for collective communication. The
documentation of how to use the two tools is found at https:
//github.com/mpickpt/mana/blob/main/manpages/mana.1.md.

Experiments were run on two MPI micro-benchmarks (Fig-
ure 4), and also on two real-world MPI programs (Figure 5).
The two real-world MPI programs are VASP [7] (VASP
version 5) and CP2K [8] (version 9.1).

The version of MANA employed at the time of writing
incurred a typical runtime overhead of 20% for the real-world
applications and more than 50% for the micro-benchmarks,
as compared to running the MPI benchmarks natively. This
overhead is expected to proportionately affect all times re-
ported in experiments. A more recent version of MANA
employs a newer “sequence number” algorithm for collective
communication [9], with much lower runtime overheads. That
version was not available until shortly before the camera-ready
deadline of the current work.

Figure 4 shows the use of two MPI micro-benchmarks:
Reduce and Alltoall. The program Reduce iterates in a loop
over MPI Reduce. The program Alltoall iterates in a loop over
MPI Alltoall followed by a single call to MPI Allreduce. The
two programs are run under: original MANA; MANA with the
Collective-to-P2P tool; and MANA with the combination of
Collective-to-P2P and Deterministic-P2P.

In all cases, the applications in Figure 4 are run with
128 MPI processes. The ratio of the time with the tool to
the base time (no tool) varies between: a moderate value of
1.47 or 2.16 (Collective-to-P2P tool alone); and a ratio of

1The observant reader will note the “PROLOG_Comm_rank_size”
macro, collapsing a standard MPI idiom to one line, in order to stay at 15 lines.

Application
(input)

Ranks Run Time (s) Run/Base
(ratio)

Reduce
(100)

128
(4 nodes)

MANA 94 base

Reduce
(100)

128
(4 nodes)

Collective
to P2P

138 1.47

Reduce
(100)

128
(4 nodes)

Collect.+
Determ.

1294 13.77

Alltoall
(1000)

128
(4 nodes)

MANA 43 base

Alltoall
(1000)

128
(4 nodes)

Collective
to P2P

93 2.16

Alltoall
(1000)

128
(4 nodes)

Collect.+
Determ.

593 13.79

Fig. 4. The “Time” column represents: the time to run under MANA (typically
within 5% of the time to run the target application without MANA); the
time using the Deterministic-P2P tool alone, the time with the Collective-
to-P2P tool, and the time for using the combined tool. These small test
programs show that even in the worst case (combination of Collective-to-
P2P and Deterministic-P2P tools), the slowdown is about a factor of 14.
The ratio for Collective-to-P2P is larger for the Alltoall test, since the
implementation of MPI Alltoall uses n2 messages, as opposed to n messages
for MPI Reduce. However, the larger performance penalty is incurred when
using Deterministic-P2P, and this penalty dominates for the combined tools.
In this case, the two tests have similar penalties.

approximately 13.8 (using both tools together). The slowdown
of 13.8 is considered acceptable, since the computation is used
only for debugging, and would normally be executed only
once. (See Section III.)

Finally, Figure 5 shows the use of MANA with two real-
world applications: VASP [6], [7] and CP2K [8]. In that figure,
the ratio for Deterministic-P2P is 3.1, which is larger than
what would be seen in the micro-benchmarks. This is because
the micro-benchmarks emphasize collective calls rather than
point-to-point calls. VASP uses point-to-point calls more ex-
tensively. This creates the higher overhead of saving metadata
(source/destination/tag) for each MPI message. Saving the
metadata is required for the log-and-replay strategy outlined
in Section III-B.

In that figure, Collective-to-P2P tool is particularly expen-
sive for 128 MPI processes (ranks) for VASP5. We hypothesize
that this is due to the broad usage of MPI Alltoall within
VASP5. Hence the ratio of 4.6 for VASP5 using Collective-to-
P2P is similar to the ratio of 2.16 for Alltoall using Collective-
to-P2P in Figure 4.

The experiment with CP2K in Figure 5 presents a different
usage to the two tools. In this case, we take advantage of the
ability of Collective-to-P2P to selectively expand only the calls
to MPI Bcast into point-to-point calls. Other MPI collective
calls are not expanded. In this more selective usage of the
Collective-to-P2P tool, the ratio of the time for the combined
tools versus the base case is a moderate 4.1. This is much
smaller than the ratio for VASP5, or the ratio for the two
micro-benchmarks seen in Figure 4.

https://github.com/mpickpt/mana
https://github.com/mpickpt/mana/blob/main/manpages/mana.1.md
https://github.com/mpickpt/mana/blob/main/manpages/mana.1.md

Application
(input)

Ranks Run Time (s) Run/Base
(ratio)

VASP5
(PdO4)

128
(4 nodes)

MANA 2191 base

VASP5
(PdO4)

128
(4 nodes)

Determ.
P2P

6771 3.1

VASP5
(PdO4)

128
(4 nodes)

Collective
to P2P

9980 4.6

VASP5
(PdO4)

128
(4 nodes)

Collect.+
Determ.

> 14,400 > 6.6

CP2K
(hco3)

64
(4 nodes)

MANA 181 base

CP2K
(hco3)

64
(4 nodes)

Bcast to
P2P +

Determ.

740 4.1

Fig. 5. The Time column represents: the time to run under MANA (typically
within 5% of the time to run the target application without MANA); the
time using the Deterministic-P2P tool alone, the time with the Collective-to-
P2P tool, and the time for using the combined tool. In the case of VASP5
(with an input for PdO4), the time for the combined tool was more than the
4 hours (14,400 seconds) allowed for a job in the interactive queue, and the
ratio was more than 6.6. For CP2K, the ratio for the combined time is only
4.1. The smaller ratio is accounted for by only reducing MPI Bcast to point-
to-point operations in this case, while retaining MANA’s original collective
communication calls for the remaining collective calls.

V. RELATED WORK

The two debugging tools described here appear to be
unique in radically transforming the execution of an MPI
application. By doing so, they provide information that aids
in the diagnosis of bugs in an implementation for transparent
checkpointing, such as MANA, or potentially in a new MPI
implementation itself. Nevertheless, it is useful to review some
other MPI debugging tools that are widely used.

A short survey of MPI debugging tools: The debugging tool
most closely related to the ideas in this paper (transforming an
MPI application and comparing the difference) is GDB4HPC.
The GDB4HPC package is a GDB-based command-line-
based parallel debugger, developed by Cray. GDB4HPC is
unique in its comparative debugging feature, which enables
programmers to run two versions of an application side by
side and compare data structures between them to identify the
location where the two codes start to deviate from each other.
CCDB (Comparative Debugging, from Cray) is a GUI tool for
GDB4HPC’s comparative debugging.

Another tool, related to Deterministic-P2P, is Sreplay [10].
This tool provides for deterministic group replay in one-
sided communication. Similarly, PRUNERS [11] employs re-
producibility to uncover non-deterministic errors. And Chapp
et al. [12] describe a three-phase workflow to express non-
determinism in HPC applications.

Other tools have been developed to automatically detect
a variety of error conditions in MPI programs. DeFreez
et al. [13] combine static analysis with program repair to
detect incorrect propagation of MPI error codes in MPICH

and its derivative software. They also employ fault injection
techniques to reproduce bugs due to incorrect error-code
propagation. This work adapts earlier work on Linux [14],
[15] to the special requirements of MPI.

One also notes Intel® Message Checker [16], which works
to detect incorrect calls to MPI functions. Errors that are
caught include: types of mismatches, race conditions, dead-
locks and potential deadlocks, and resource misuse. Likewise,
Sato et al. [17] use noise injection to discover unintended race
conditions for MPI messages.

There are, of course, many commercial debuggers to debug
MPI applications. These include Arm DDT [18], [19] (where
DDT is Distributed Debugging Tool) and TotalView (originally
part of the PALLAS programming environment [20]) are most
commonly used, and many HPC computing centers provide
access to these debuggers. Both TotalView and DDT provide
intuitive graphic user interfaces as well as command-line
interfaces, and can be used to debug MPI (and OpenMP)
programs written in C/C++ and Fortran run at scale.

In addition, other parallel debuggers are available either
from open source projects or vendor extensions to detect a
wider spectrum of bugs. STAT (the Stack Trace Analysis
Tool) [21] is a highly scalable lightweight tool that gathers
and merges stack traces from all of the processes of a parallel
application into a prefix tree to identify which processes are
executing similar code. Cray’s ATP (Abnormal Termination
Processing) automatically runs STAT when the code crashes.
These tools are specifically useful to detect program hangs or
crashes at large scale.

However, these general-purpose debugging tools are for
debugging MPI applications, but not the MPI implementations
themselves. These tools include DDT’s Message Queues fea-
ture, which can show the status of the message buffers of
MPI. (Note that the message queues feature does not work
with Cray MPICH [22].) Further, runtime MPI checkers, such
as Umpire [23], Marmot [24], and MUST [25] can detect the
MPI semantics at runtime, but they cover only bugs in the
application, and not in the MPI library [26].

There are other tools, which can debug an MPI library,
such as FlowChecker [27], which extracts program intentions
of message passing, and checks whether these intentions are
fulfilled correctly by the underlying MPI libraries. If the
intentions are not fulfilled correctly, then it reports the bugs
and provides diagnostic information. FlowChecker, however,
is not intended for debugging MPI’s non-deterministic com-
munication bugs.

There are a few record-and-replay tools that can detect non-
deterministic errors. For example, ReMPI [28] is a highly
scalable record-and-replay tool for MPI applications. It records
the order of MPI message matching in one run, and can
deterministically replay it during subsequent runs. However,
it cannot be used in combination with MANA to compare the
original run (which resumes after a checkpoint), and a second
run which restarts a new process from the checkpoint image
files on disk. Deterministic-P2P (presented here) was created
for this particular purpose.

Review of transparent checkpointing for MPI:
Many early MPI checkpointing approaches were tied too

closely to a specific underlying network, whether it was
TCP/IP (DMTCP [29]; MPICH-V [30]) or InfiniBand an In-
finiBand plugin for DMTCP [31]; (the Open MPI checkpoint-
restart service [32], [33]; and the MVAPICH2 checkpoint-
restart service [34]). The approach of all except the two
examples based on DMTCP was to disconnect from the
network prior to checkpoint, and then to re-connect to the
network when resuming the computation (or when restarting
from a checkpoint image). In the case of Open MPI and
MVAPICH2, they delegated to BLCR [35] to do the actual
checkpoint. BLCR could checkpoint a tree of processes on a
single node.

An approach to support mobile MPI applications exists,
albeit while partially abandoning application transparency
and requiring re-compilation of the MPI application source
code [36]. And CIFTS provides a fault-tolerant BLCR-based
“backplane” [37].

MANA is unusual in modifying the execution behavior
of a target MPI application even prior to checkpointing.
MANA introduced the split-process model for checkpointing
of MPI [3]. Details are in Section II-A. The first work [3]
demonstrated transparent checkpointing of GROMACS [38]
and an additional three applications at 2048 MPI processes
over 64 Haswell nodes. Efforts to deploy MANA at NERSC
are described in [39], and efforts to deploy independently of
the NERSC environment are described in [40]. The second
work [40] demonstrated transparent checkpointing for 64 pro-
cesses with GROMACS and 512 processes with the HPCG
benchmark [41].

Note that transparent checkpointing of MPI had previ-
ously been demonstrated to the level of 16,368 processes for
NAMD and 32,368 processes for HPCG (using 1/3 of the
supercomputer) on Stampede at TACC in 2016 [42]. That
early work was based on DMTCP’s transparent support for
InfiniBand [31], and that code likely would not run on today’s
machines using either Cray GNI or extensions to the original
InfiniBand. Further, no effort was made in the current work
to test the limits of scalability of MANA-2.0.

VI. CONCLUSION

Two debugging tools were introduced: Collective-to-P2P
and Deterministic-P2P. The tools may be used individually
or in combination. The tools are particularly valuable in
debugging MPI implementations or checkpointing tools that
fail to preserve the communication-determinism that would
be present when the MPI application is run with a simpler,
reference implementation of MPI. The tools presented here
increase the runtime of an MPI execution by several times (and
even by more than a factor of ten, when used in combination).
However, since the tools need only be used once, as part of
a larger debugging strategy, this is considered an acceptable
trade-off. As described in the section on related work, the
ability to transform the execution of an MPI application for
purposes of diagnosing a bug seems to be unique at this time.

ACKNOWLEDGMENTS

This work used the resources of the National Energy Sci-
entific Computing Center (NERSC) at the Lawrence Berkeley
National Laboratory. The work of the first author was partially
supported by NSF Grant OAC-1740218.

REFERENCES

[1] Y. Xu, Z. Zhao, R. Garg, H. Khetawat, R. Hartman-Baker, and G. Coop-
erman, “MANA-2.0: A future-proof design for transparent checkpointing
of MPI at scale,” in Int. Symp. on Checkpointing for Supercomputing
(SuperCheck’SC-21), 2021 SC Workshops Supplementary Proceedings.
IEEE, Nov. 2021, pp. 68–78.

[2] F. Cappello, A. Guermouche, and M. Snir, “On communication de-
terminism in parallel HPC applications,” in 2010 Proceedings of 19th
International Conference on Computer Communications and Networks.
IEEE, 2010, pp. 1–8.

[3] R. Garg, G. Price, and G. Cooperman, “MANA for MPI: MPI-agnostic
network-agnostic transparent checkpointing,” in Proc. of the 28th
Int. Symp. on High-Performance Parallel and Distributed Computing.
ACM, 2019, pp. 49–60.

[4] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in 2011 IEEE International Parallel & Distributed
Processing Symposium. IEEE, 2011, pp. 989–1000.

[5] F. Cappello, A. Guermouch, T. Herault, and M. Snir, “Revisiting fault
tolerant protocols for parallel HPC applications,” in Proc. of the 2nd
Workshop of the Joint Laboratory for Petascale Computing, 2009.

[6] J. Hafner, “Ab-initio simulations of materials using VASP: Density-
functional theory and beyond,” Journal of computational chemistry,
vol. 29, no. 13, pp. 2044–2078, 2008.

[7] “VASP: Vienna Ab Initio Simulation Package,” https://www.vasp.at,
[Online; accessed 21-Nov-2018].

[8] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, “CP2K:
atomistic simulations of condensed matter systems,” Wiley Interdisci-
plinary Reviews: Computational Molecular Science, vol. 4, no. 1, pp.
15–25, 2014.

[9] Y. Xu and G. Cooperman, “Low runtime overhead for transparent
checkpointing of MPI,” September 2022, (in preparation).

[10] X. Qian, K. Sen, P. Hargrove, and C. Iancu, “Sreplay: Deterministic
group replay for one-sided communication,” in 30th International Con-
ference on Supercomputing (ICS’16), 2016.

[11] K. Sato, I. Laguna, G. L. Lee, M. Schulz, C. M. Chambreau, S. Atzeni,
M. Bentley, G. Gopalakrishnan, Z. Rakamaric, G. Sawaya et al.,
“PRUNERS: Providing reproducibility for uncovering non-deterministic
errors in runs on supercomputers,” The International Journal of High
Performance Computing Applications, vol. 33, no. 5, pp. 777–783, 2019.

[12] D. Chapp, D. Rorabaugh, K. Sato, D. H. Ahn, and M. Taufer, “A
three-phase workflow for general and expressive representations of
nondeterminism in HPC applications,” The International Journal of High
Performance Computing Applications, vol. 33, no. 6, pp. 1175–1184,
2019.

[13] D. DeFreez, A. Bhowmick, I. Laguna, and C. Rubio-González, “Detect-
ing and reproducing error-code propagation bugs in MPI implementa-
tions,” in Proc. of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2020, pp. 187–201.

[14] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. Liblit, “EIO: Error handling is occasionally correct.”
in FAST, vol. 8, 2008, pp. 1–16.

[15] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau, and
A. C. Arpaci-Dusseau, “Error propagation analysis for file systems,” in
Proc. of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2009, pp. 270–280.

[16] J. DeSouza, B. Kuhn, B. R. De Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov, “Automated, scalable debugging of MPI programs with
Intel® Message Checker,” in Proc. of Second International Workshop
on Software Engineering for High Performance Computing System
Applications, 2005, pp. 78–82.

[17] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, M. Schulz, and C. M.
Chambreau, “Noise injection techniques to expose subtle and unintended
message races,” in Proceedings of the 22Nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2017, pp. 89–101.

https://www.vasp.at

[18] K. Antypas, “Allinea DDT as a parallel debugging alternative to
totalview,” Lawrence Berkeley National Lab.(LBNL), Berkeley, CA
(United States), Tech. Rep., 2007.

[19] B. Krammer, V. Himmler, D. Lecomber et al., “Coupling DDT and
Marmot for debugging of MPI applications.” in Parallel Computing
Conference (ParCo’07), vol. 7, 2007, pp. 653–660.

[20] W. Krotz-Vogel and H.-C. Hoppe, “The pallas portable parallel program-
ming environment,” in European Conference on Parallel Processing.
Springer, 1996, pp. 897–903.

[21] D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P. Miller,
and M. Schulz, “Stack trace analysis for large scale debugging,” in 2007
IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2007, pp. 1–10.

[22] “Arm forge user guide (version 22.04),” 2022. [On-
line]. Available: https://developer.arm.com/documentation/101136/
22-0-4/DDT/Message-queues/View-message-queues

[23] J. S. Vetter and B. R. De Supinski, “Dynamic software testing of
MPI applications with Umpire,” in SC’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing. IEEE, 2000, pp. 51–51.

[24] B. Krammer, M. S. Müller, and M. M. Resch, “MPI application devel-
opment using the analysis tool MARMOT,” in International Conference
on Computational Science. Springer, 2004, pp. 464–471.

[25] T. Hilbrich, M. Schulz, B. R. d. Supinski, and M. S. Müller, “MUST: A
scalable approach to runtime error detection in MPI programs,” in Tools
for high performance computing 2009. Springer, 2010, pp. 53–66.

[26] I. Laguna, D. H. Ahn, B. R. de Supinski, T. Gamblin, G. L. Lee,
M. Schulz, S. Bagchi, M. Kulkarni, B. Zhou, Z. Chen, and F. Qin, “De-
bugging high-performance computing applications at massive scales,” in
Communications of the ACM, 2015, pp. 72–81.

[27] Z. Chen, Q. Gao, W. Zhang, , and F. Qin, “Flowchecker: Detecting bugs
in mpi libraries via message flow checking,” in SC ’10: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, 2010, pp. 1–11.

[28] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, and M. Schulz, “Clock
delta compression for scalable order-replay of non-deterministic parallel
applications,” in SC’15: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 2015.

[29] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS’09).
Rome, Italy: IEEE, 2009, pp. 1–12.

[30] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V project: A multiprotocol automatic fault-tolerant MPI,” The
International Journal of High Performance Computing Applications,
vol. 20, no. 3, pp. 319–333, 2006.

[31] J. Cao, G. Kerr, K. Arya, and G. Cooperman, “Transparent checkpoint-

restart over InfiniBand,” in ACM Symposium on High Performance
Parallel and and Distributed Computing (HPDC’14). ACM Press,
2014.

[32] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The
design and implementation of checkpoint/restart process fault tolerance
for Open MPI,” in 2007 IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2007, pp. 1–8.

[33] J. Hursey, T. I. Mattox, and A. Lumsdaine, “Interconnect agnostic
checkpoint/restart in Open MPI,” in Proc. of 18th ACM Int. Symp. on
High Performance Distributed Computing, 2009, pp. 49–58.

[34] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent
checkpoint/restart for MPI programs over InfiniBand,” in Int. Conf. on
Parallel Processing (ICPP’06), 2006, pp. 471–478.

[35] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux clusters,” Journal of Physics: Conference Series,
vol. 46, no. 1, p. 494, 2006.

[36] R. Fernandes, K. Pingali, and P. Stodghill, “Mobile MPI programs in
computational grids,” in Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, 2006,
pp. 22–31.

[37] R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Hargrove, A. Geist,
D. Panda, A. Lumsdaine, and J. Dongarra, “CIFTS: A coordinated
infrastructure for fault-tolerant systems,” in Int. Conf. on Parallel Pro-
cessing (ICPP’09), September 2009, pp. 237–245.

[38] H. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS:
A message-passing parallel molecular dynamics implementation,” Com-
puter Physics Communications, vol. 91, no. 1, pp. 43 – 56, 1995.

[39] Z. Zhao, R. Hartman–Baker, and G. Cooperman, “Deploying Check-
point/Restart for Production Workloads at NERSC,” in International
Conference for High Performance Computing Networking Storage and
Analysis, 2020, pp. 1–3.

[40] P. S. Chouhan, H. Khetawat, N. Resnik, T. Jain, R. Garg, G. Cooperman,
R. Hartman–Baker, and Z. Zhao, “Improving scalability and reliability
of MPI-agnostic transparent checkpointing for production workloads
at NERSC (extended abstract),” in First International Symposium on
Checkpointing for Supercomputing (SuperCheck’21), Berkeley, CA,
2021, pp. 1–3, https://arxiv.org/abs/2103.08546; from https://supercheck.
lbl.gov/resources.

[41] J. Dongarra, M. A. Heroux, and P. Luszczek, “A new metric for ranking
high-performance computing systems,” National Science Review, 2016,
(benchmark at https://www.hpcg-benchmark.org/).

[42] J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni,
J. Vienne, and G. Cooperman, “System-level scalable checkpoint-restart
for petascale computing,” in 22nd IEEE Int. Conf. on Parallel and
Distributed Systems (ICPADS’16). IEEE Press, 2016, pp. 932–941.

https://developer.arm.com/documentation/101136/22-0-4/DDT/Message-queues/View-message-queues
https://developer.arm.com/documentation/101136/22-0-4/DDT/Message-queues/View-message-queues
https://arxiv.org/abs/2103.08546
https://supercheck.lbl.gov/resources
https://supercheck.lbl.gov/resources
https://www.hpcg-benchmark.org/

	Introduction
	Background
	Split-processes
	Communication determinism and send determinism

	Two Debugging Tools
	Collective-to-P2P: Reduction of Collective Communication to Point-to-Point
	Deterministic-P2P: Reduction of Parallel Point-to-point Communication to Deterministic Point-to-point
	Combining Collective-to-P2p with Deterministic-P2P: Motivation

	Experimental Evaluation
	Related Work
	Conclusion
	References

