MANA-2.0: A Future-Proof Design for
Transparent Checkpointing of MPI at Scale

author(s) omitted

Abstract—MANA-2.0 is a scalable, future-proof design for
transparent checkpointing of MPI-based computations. Its net-
work transparency (“network-agnostic”’) ensures that MANA will
provide a viable, efficient mechanism for transparently check-
pointing computational workloads on future supercomputers.
MANA is being tested on today on the Cori supercomputer
at NERSC with its proprietary Cray GNI network, but it
is designed to work over any standard MPI running over
an arbitrary network. MANA-2.0 is a work in progress that
already supports transparent checkpoint-restart over thousands
of ranks. Experimental results include GROMACS’s point-to-
point-intensive MPI implementation, and VASP’s intensive use
of collective communication. Perhaps the most important lesson
to be learned from MANA-2.0 is a series of algorithms and data
structures for library-based transformations that enable MPI
computations over MANA-2.0 to reliably survive the checkpoint-
restart transition needed for long-running HPC computations.
The transformation of each MPI call into calls to a restricted
set of underlying ‘“‘checkpoint-safe”” MPI calls is analogous to the
central problem of compilers.

Index Terms—transparent checkpointing, MANA, DMTCP,
split-process model, production workloads, supercomputing

I. INTRODUCTION

MANA (MPI-Agnostic Network-Agnostic checkpoint-
restart) is a previously developed package for checkpoint-
ing MPI [1]. Among its unique features, MANA supports
checkpoint-restart for MPI applications, while being transpar-
ent to (a) the MPI application; (b) the MPI library itself;
and (c) the network libraries underlying the MPI library.
These features are based on a novel split-process architecture
(see II-A). Unlike previous approaches, MANA directly and
transparently interposes on the MPI calls themselves, taking
advantage of the standardized API for MPL

MANA-2.0 is intended as a scalable, future-proof design for
transparent checkpointing of MPI-based computations. While
MANA is being tested on today’s Cori supercomputer using
the Cray GNI network, its network transparency (“‘network-
agnostic”) ensures that MANA will provide a viable, effi-
cient mechanism for transparently checkpointing computa-
tional workloads on future supercomputers. This is important
not only for fault tolerance for long-running HPC jobs, but
also as a mechanism to chain together resource allocations
(typically limited to 48 hours by HPC center policies), so as
to run very long jobs while retaining the resource-allocation
flexibility required by sysadmins.

MANA’s unique feature of MPI and network transparency
is a good fit for the National Energy Research Scientific

Computing (NERSC) center', which employs supercomputing
resources with a proprietary Cray GNI network. The develop-
ment of MANA has been the basis for a long-term collabora-
tion between NERSC and the MANA team. Note that previous
approaches to checkpointing MPI [2]-[6] supported TCP and
InfiniBand, but did not support the Cray GNI network.

This initial promise led to a goal of supporting production-
level deployment of MANA on NERSC’s Cori supercom-
puter [7]; and following that, to support Perlmutter (the #5
supercomputer in the world as of this writing [8]). But history
has shown achieving the goal of production-level transparent
checkpointing to be more difficult than anticipated. In personal
communications, the authors both of the original MANA [1]
and of an updated version [9] have both expressed concerns
about the fragility of the software architecture and its key
components.

In general, the difficulty of developing robust checkpointing
algorithms for MPI can be understood by analogy to develop-
ing a new optimizing compiler. Both endeavors are concerned
with translating high-level code representations into lower-
level executions. Both endeavors require subtle algorithms to
preserve the high-level semantics when translated to a lower
level (compilers), or across the checkpoint-restart boundary
(MANA).

This work demonstrates a robust version of MANA
(MANA-2.0) that can scale to a high level. This work provides
two novel elements:

1) While still a work in progress, MANA-2.0 is already
shown to scale well on two very different types of
computations (see Section IV). GROMACS [10], [11]
highlights intensive MPI point-to-point computation.
VASP [12] highlights intensive MPI collective compu-
tation. VASP is responsible for more than 20% of the
machine time on Cori [7].

2) Perhaps even more important, MANA-2.0 is the fruit of
a series of enhancements that serve as lessons learned for
related research projects. MANA-2.0 applies a wrapper-
function based strategy to efficiently translate each MPI
call of the original MPI application into one or more
direct MPI calls. The algorithms of MANA-2.0 include
data structures that enable MANA-based computations
to survive a checkpoint and full restart. In this respect,
MANA-2.0 bears as much resemblance to a compiler

INERSC is the primary computing facility for the US Department of
Energy’s Office of Science (https://www.nersc.gov/).

https://www.nersc.gov/

(translating into lower level MPI calls), as it does to a
simple library utility.

The two novel elements mentioned above represent a
qualitative difference of the current work over the original
MANA. For the first time, MANA-2.0 demonstrates the ability
to reliably checkpoint GROMACS, even at 2048 ranks. In
comparison, the original MANA work [1] was intended as a
proof-of-concept, only. The previous authors had encountered
a race condition in their GROMACS experiments, and this race
condition forced them to run the GROMACS experiments of
their experimental section multiple times, before they could
succeed in doing a checkpoint-restart — and this was the case
for each experiment performed for 256 ranks and above [13].

The In a personal communication, the first author from the
original MANA work (from [1]) noted that they had to run
the experiments multiple times to get checkpoint-restart to go
through for Gromacs, for 256 ranks and up. Since the initial
implementation was primarily aimed to demonstrate a proof-
of-principle, there remained multiple corner cases that would
cause the program to crash at random during checkpoint-
restart.

MANA-2.0 is an example of a larger class of projects
that rely on source-level transformations of MPI calls while
maintaining correctness and performance. See the begin-
ning of Section III for a list of issues in MPI source
transformations that were found to be important for cor-
rectness and performance. A short list of the relevant is-
sues (expanded on in Section III) includes: (i) decompo-
sition of blocking MPI calls into asynchronous calls (e.g.,
MPI_Send to MPI_Isend/MPI_Test); (il) insertion of
blocking MPI calls while avoiding deadlock (e.g., is insert-
ing MPI_Barrier before MPI_Bcast valid?); (iii) de-
termining if an MPI call can be satisfied locally (e.g.,
MPI_Translate_group_ranks); and (iv) when can it be
proved that a (virtualized) MPI request object can no longer
be accessed by the MPI application in the future.

This work is organized into the following sections. Sec-
tion II briefly describes the underlying split-process design
of the original MANA, and then gives further details of
how checkpointing is supported for key components of MPI.
Section III describes the algorithmic innovations of this work
in fixing many of the deficiencies in key components of
MANA. Section IV presents an experimental evaluation of the
modified version of MANA. Section V presents the related
work. Finally, Section VI is the conclusion.

II. BACKGROUND
A. Split processes

In brief, the key idea of a split process approach is to load
two independent programs into the virtual memory of a single
process. Because they are in the same virtual memory, a func-
tion from one program (typically the “upper-half” program)
may call a function of the other program (typically the “lower-
half” program) — so long as the address of the lower-half
function is known to the upper-half function.

1 USER_DEFINED_WRAPPER(int, Barrier, (MPI_Comm) comm)
int retval;
commit_begin(comm)
DMTCP_PLUGIN_DISABLE_CKPT();
MPI_Comm realComm = VIRTUAL_TO_REAL_COMM(comm);
JUMP_TO_LOWER_HALF (Lh_info.fsaddr);
retval = NEXT_FUNC(Barrier) (realComm);
RETURN_TO_UPPER_HALF();
DMTCP_PLUGIN_ENABLE_CKPT();

commit_finish();
return retval;

Fig. 1. Code snippet of the MPI_Barrier wrapper.

In practice, the upper-half program will be the MPI appli-
cation program, dynamically linked with a “stub” MPI library.
The “stub” MPI library consists of wrapper functions around
each MPI call. The wrapper calls a lower-half function in the
actual MPI library. Finally, the lower-half program consists of
a small MPI application linked to the actual MPI library, which
links to the necessary libraries. Figure 1 shows an example of
the MPI_Barrier wrapper. The network library is based on
the proprietary Cray GNI interconnect for Cori, and will be
based on the proprietary HPE Cray Slingshot interconnect for
the new Perlmutter supercomputer.

The advantage of this scheme is that only the upper-half
program is checkpointed. (Only its memory is saved in a
checkpoint image file.) This sidesteps the key problem of other
checkpointing approaches: There is no need to disconnect and
re-connect the network (the proprietary Cray GNI network
in our case). At the time of restart, the lower-half program
is started, and it loads into memory at the original address
the upper-half program, from the checkpoint image file. For a
deeper description of split processes, see the original paper of
Garg et al. [1].

B. Overview of Semantic Components of MANA

We standardize here on MPI-3.1 [14]. There are primarily
four categories for which MANA must save state at the time
of checkpoint:

1) the state of all memory in the upper half;

2) a consistent snapshot associated with any MPI collective
communication calls in progress (e.g., MPI_Barrier
or MPI_Bcast;

3) a consistent snapshot associated with any MPI point-

to-point calls in progress (e.g., MPI_Send and
MPI_Recv;
4) any MPI one-sided communication calls (the

MPI_Win_XXX family of calls).

MPI’s one-sided communication calls are not yet supported
in MANA. The support for the MPI_Win_ family is in
the roadmap of MANA. The details of the remaining three
categories are described in the next section.

C. Virtualized MPI objects

MPI calls may create new objects of types such as
MPI_Comm and MPI_Request. In the MANA wrapper
functions around these calls, a new virtual object (virtualized
communicator or virtualized request in our example) is cre-
ated and returned to the user’s MPI application. An internal
mapping from the virtual object to the “real” object returned
by the lower-half MPI library is maintained. Thus, when the
user’s MPI application makes a later call, using one of these
virtualized objects, the MANA wrapper function automatically
replaces the virtualized object by the real object stored in its
mapping.

This is important, since the MPI application may make
copies of its objects, to be stored at arbitrary addresses. So, at
restart time, MANA simply updates its virtual-to-real mapping
with new, real objects, instead of trying to directly patch the
memory of the MPI application with updated real objects.

III. NOVEL ALGORITHMS FOR KEY COMPONENTS OF
MANA

The challenges in supporting MANA robustly can be at-
tributed to several factors.

1) MANA is unusual in interposing directly at the level
of the MPI API. A checkpoint can be taken only if no
MPI rank is in the middle of the MPI library. Hence,
some MPI calls, such as MPI_Send and MPI_Recv,
interposed on by wrappers that convert the calls to asyn-
chronous calls: MPI_Isend and MPI_TIrecv, along
with a loop around MPI_Test.

2) The conversion to semantically equivalent MPI calls can
result in higher runtime overhead.

3) A conversion to semantically equivalent MPI calls,
while valid for most MPI implementations, cannot be
guaranteed for all MPI implementations. In particular,
see [15], the MPI-4.0 addendum for semantics. This
helps resolve questions such as: when it is valid to add
an MPI_Barrier in front of a non-blocking MPI col-
lective communication (e.g., the root in MPI_Bcast);
whether the insertion of an MPI_Barrier will slow
down or accelerate an MPI application (see [16, page 41:
MPICH_COLL_SYNC]; and which MPI calls may be
resolved solely using local information. MPI_Barrier
before MPI_Bcast also can create deadlock. Details
are discussed in following subsections.

4) While MANA can use its centralized coordinator as
a side channel to communicate among the ranks, this
is inefficient. Hence, MANA-2.0 instead makes direct
use of MPI calls as being more maintainable and more
efficient, while making sure semantically to be non-

intrusive.

5) MANA-2.0 takes care to internally use MPI calls
that solely access local information, such as
MPI_Translate_group_ranks. However, the

overhead can still be sensitive to particular MPI
implementations.

6) MANA-2.0 virtualizes several objects such as MPI com-
municators and MPI requests. Thus, if a checkpoint-
restart occurs between the creation of the object and
a second use, then the virtualized object can be bound
to a newly created object on restart. However, unless the
growing list of virtualized objects is garbage-collected,
the size of that list continues to grow — resulting both
in a growing memory footprint, and in higher overhead
to access an object.

The next subsection discusses these and other issues that
arose.

A. Virtualized requests

Resources allocated by MPI libraries like MPI_Comm and
MPI_Groups are virtualized to survive the ckpt-restart bar-
rier, but MPI_Request was not. This issue did not arise in
the earlier implementation [1] because non-blocking collective
communications were not supported. Recall that new virtual
variables of type MPI_Request, such as MPI_Isend and
MPI_TIBcast (broadcast) are created in the original non-
blocking MPI function wrappers. The requests are retired when
the application calls MPI_Test or MPI_Wait. The action of
the MPI call must be completed by the time of an MPI_Wait
call or an MPI_Test whose flag parameter returns “true”
(success).

Unlike resources like MPI_Comm, which are never actually
removed from the virtual ID table, MPI requests are generated
so frequently that one needs to aggressively prune completed
MPI requests to avoid large performance and large memory
overhead. New virtual MPI requests are created in non-
blocking MPI function wrappers, and retired in MPI_Test
and MPI_Wait wrappers. One exception is handling requests
generated by non-blocking point-to-point communications. In
this case, virtual requests are saved in a special log-and-replay
data structure. So we can’t update the user’s memory to update
the request to MPI_REQUEST_NULL.

A two-step retirement algorithm is developed to safely
delete completed requests without requiring knowledge of the
addresses where the user’s application may have stored the
request. When a request is complete, we update the virtual ID
table so that the completed virtual request points to a special
value MPI_REQUEST_NULL. The next time MPI_Test and
MPI_Wait are called, we know the virtual request is ready to
be removed, since the real request is MPI_REQUEST_NULL.
Then we can safely remove the virtual request from the table
and set user’s request variable to MPI_REQUEST_NULL.

B. Drain send-receive for point-to-point communication

In the previous work [1], MANA translated blocking point-
to-point communications to their non-blocking versions, and
used a variation of an all-to-all bookmark exchange algorithm
to drain point-to-point messages in the network during check-
point. Point-to-point communication wrappers accumulated
the count of the number of messages at runtime. When
checkpointing, each rank sent the count number of messages

to the coordinator, and the coordinator sent the total number
of messages to each rank. If the total send and receive counts
did not match, MANA used MPI_Iprobe to detect messages
still in the network and tried to receive them with MPI_Recv.
Finally, MANA updated the new send and receive counts to
the coordinator and repeated the process.

This design has some drawbacks, however. Frequent com-
munication with the coordinator can be expensive when run-
ning at large scale. And sharing only the total number of sends
and receives makes it impossible to identify which rank the
missing messages belong to.

Therefore, we improved the algorithm to use a smaller-
grain message counter for each pair of ranks, and share only
essential information with MPI_Alltoall. After calling
MPI_Alltoall at checkpoint time, all ranks know, without
further communication, how many bytes they were expected
to receive and how many they actually received. Locally, each
rank is able to use MPI_Recv to drain missing bytes from
peers.

Another lesson we learned is that if MPI_Recv or
MPI_TIrecv has already been called, then MPI_TIprobe
can no longer detect the message in the network. There-
fore, if some rank found no messages in the network by
using MPI_TIprobe, and if the send-receive count is still
unbalanced, then there must be an unfinished MPI_Irecv
waiting to be completed. In this case, instead of using an
extra MPI_Recv to drain the message, we call MPI_Test
on existing MPI_TIrecv records to discover pending MPI
requests associated with MPI_TIrecv records, and to then
drain the missing messages.

C. Keep a list of only the active communicators for the sake
of restart

In the original design, when restoring MPI communicators
during restart, all functions used to create communicators were
recorded and replayed. Therefore, many communicators that
were no longer used would be recreated during restart. In
addition, we couldn’t retire any MPI communicators, in case
they were used to create other communicators. As a result,
time was wasted on replaying unnecessary functions. The
virtual ID table (mapping) for communicators also occupied
more memory and slowed down the lookup performance.

Our new design instead keeps a list of active communicators
and groups, and reconstructs only communicators and groups
in the active list during restart. A knowledge of the underlying
MPI group and its members suffices to recreate a semantically
identical communicator. So, it is no longer necessary to
replay MPI calls that build new communicators from old
communicators.

D. Adding a barrier before collective communication

In the MPI standard [14], there is no requirement in a
collective function that all participating ranks must enter the
function before any rank can return. (For example, the “root”
in MPI_Bcast can broadcast its message and return before
other ranks receive the message.) However, because of the

two-phase-commit algorithm (see [1]), we add a barrier before
each collective communication call. We do this so that we will
not be required to checkpoint in the middle of an arbitrary
collective call, such as MPTI_Bcast. This added semantic can
change the behavior of applications.

A major impact is the performance of collective communi-
cations. For example, adding a barrier before a MPI_Bcast
forces the “root” rank to wait until all other ranks arrives.
Generally the barrier makes the MPI_Bcast running two to
three times slower. However, in the case of MPI_Allreduce
where all ranks need to send and receive data from other
ranks, the barrier slightly improved the performance. Hence,
see the recommendation of Cray for trying both and testing
with CRAYPAT [16, page 41].

E. Deadlock between MPI_Bcast and MPI_Send/Recv

In addition to the impact on performance, in some rare
cases the added barrier can lead to deadlocks that do not
exist in the native MPI application. Assuming two ranks,
rank 0 and rank 1 communicate with each other. Rank 0 calls
MPI_Bcast as the “root” rank then calls MPI__Send. Rank 1
calls MPI_Recv and then calls MPI_Bcast as the receiver.
There is no deadlock when running natively. However, if
we add an barrier before the MPI_Bcast, rank 0 will wait
rank 1 to join the barrier, but rank 1 can only join the barrier
when rank O return from the MPI_Bcast and MPI_Send.
Therefore, we have a deadlock.

To avoid the deadlock, We provided an alternative wrap-
per implementations for functions like MPI_Bcast that
uses point-to-point communications instead of the real
MPI_Bcast function in the lower half. However, this is just
a naive implementation and lacks of optimization compared
to real MPI implementations. A better algorithm that doesn’t
require barriers before collective communiation is on MANA’s
roadmap.

F. Handling MPI named constants in Fortran

Because of the nature of Fortran, some MPI
named constants, such as MPI_IN PLACE and
MPI_STATUS_IGNORE, are set at link time instead of
compile time [17]. This is because Fortran uses common
blocks, instead of true global constants. So, named constants
in Fortran are addresses to special values in the underlying
MPI library. Therefore, when using MANA with Fortran
MPI applications, the named constants passed into MANA’s
Fortran wrappers are addresses, instead of the actual constant
values as in the C interface. See [17] for details.

To identify these link-time named constants correctly in
MANA’s wrappers, we linked a small Fortran program into
MANA that discovers the value/address of the Fortran named
constants dynamically. If a parameter passed in from a user’s
application matches a Fortran named constants, then MANA-
2.0 replaces the value with the equivalent C constant when
calling the real MPI function in the lower half.

G. The FS register

A major source of the runtime overhead is due to the use of
the “FS” register. For systems that cannot use the FSGSBASE
Linux kernel patch, we designed a workaround to reduce the
cost of using the "FS” register. For details, see [18] in this
workshop.

H. C++ lambda functions

C++ lambda functions were used in many MPI function
wrappers in MANA to increase the readability of codes,
but they come at the cost of performance. A C++ lambda
function was found to be compiled into three or four additional
call frames at runtime. For frequent MPI calls, this can add
significant runtime overhead. To remove lambda functions in
MANA, functions that take lambda functions as callbacks are
decomposed into dedicated “prepare” and “finish” functions.

For example, in collective communication wrappers, codes
that call the real collective functions in the MPI library are
wrapped in lambda functions, and passed into the commit ()
function as part of the two-phase-commit algorithm describes.
The commit () function will do the preparation work, call
the lambda function, and finally clean up the resources and
states. In this new design, the commit function is separated into
two functions: commit_lbegin () for the preparation and
commit_end () for the cleanup. The wrapper is responsible
for calling: (i) commit_begin (); (ii) the codes that used
to be in the lambda function; and (iii) commit_end () in
sequence to perform the two-phase-commit algorithm.

I. Other sources of runtime overhead

Other sources of runtime overhead in MANA-2.0 are
reported in [19]. These smaller factors also contribute to
MANA’s runtime overhead. A brief list of these factors fol-
lows.

1) Translating virtual ID to real ID depends on map opera-
tions of C++ std::map. Typically C++ std::map requires
O(logn) to lookup an entry in the map. In some cases,
we also need linear search in the map.

2) Disable and enable DMTCP checkpoint are used widely
in MPI function wrappers. The cost of lock operations
are too expensive because of the high frequency usage.

3) An internal helper method that translates local ranks of
a communicator to global ranks makes several calls to
the lower half.

4) We currently replay all non-blocking collective commu-
nications, like MPI_Ibarrier, MPI_Ireduce and
MPI_TIbcast, to re-create virtualized requests. Not
only is time wasted to create completed requests, but
this also increases the size of virtual request table and
slows down the translation time.

J. Stragglers

A straggler is an MPI rank that participates in a collective
communication, but because it is finishing a CPU-intensive
operation, it can take minutes to hours before it can join
the collective communication. As a result, the completion of

the collective communication is delayed. Even worse, from
the viewpoint of checkpointing, no checkpoint can take place
while some ranks are still in the middle of a collective call in
the lower-half MPI library.

K. Globally unique IDs: MPI_Translate_group_ranks

A challenge in the previous implementation of the two-
phase-commit algorithm is that the MANA centralized coor-
dinator does not know which ranks participate in the same
active communicator. This limits the ability of the MANA
centralized coordinator to determine which MPI ranks must
stop and wait for the final checkpoint command, and which
MPI ranks must continue to execute in order to “unblock” later
collective communication calls.

In order to get around this issue in MANA-2.0, each
MPI rank reports to the centralized coordinator whether
it is currently executing within a collective communica-
tion call — and if so, provides a globally unique id
for that collective communicator. For performance rea-
sons, the rank must compute this globally unique id
without further communication with its peers. This is
done using MPI_Translate_group_ranks. This al-
lows it to translate the ranks of the current communi-
cator to the corresponding rank in MPI_COMM_WORLD.
The ranks in the current communicator are all known
as 0, 1, ..., MPI_Comm_size()-1, where we have
taken liberties with the syntax of MPI_Comm_size ().
MPI_Translate_group_ranks then produces the set
of corresponding ranks in MPI_COMM_WORLD, and a hash
function is used to produce an integer that is globally unique
with high probability.

L. Hybrid Phase 2 (out of scope for this article)

To further improve the performance of the two-phase-
commit algorithm, we designed a hybrid version of the algo-
rithm, which removes the barrier before each collective com-
munication. The details of this improved two-phase-commit
algorithm are extensive, and so are out of scope for this brief
survey.

M. Lessons learned

There are some lessons learned from algorithms discussed
above. First, additional communications used by MANA
should be minimized. Where possible, use MPI calls for
MANA’s internal requirements for sharing information among
ranks, instead of relying on MANA’s centralized coordinator.
Also where possible, MPI calls that complete based on local
information is preferred over MPI calls requiring peer-to-peer
communication. Minimizing the communication inside MANA
not only improves the runtime performance, but also reduces
race conditions and helps debugging.

Another lesson learned in MANA-2.0 is that some MPI
calls can be emulated with other MPI calls. For example,
MPI_Wait is implemented as a loop that repeatedly calls
MPI_Test. With this emulation, tools like MANA can inter-
rupt a time-consuming or blocking MPI call without break-
ing the execution. However, emulating MPI calls with other

MPI calls requires deep understanding of the MPI semantics.
Otherwise, it’s easy to introduce bugs without noticing. For
example, adding a barrier before MPI_Bcast may result in
deadlock.

Last but not least, one should instrument MANA to pro-
vide additional information that can be used in its algo-
rithms: a globally unique id for each communicator (see
MPI_Translate_group_ranks); recording the number
of bytes sent and received for each possible sender-receiver
pair (using MPI_Alltoall).

IV. EXPERIMENTAL EVALUATION

All experiments were run on Cori, a Cray XC40 system at
NERSC. Cori has two types of compute nodes, dual-socket
Intel Haswell and single-socket KNL nodes, interconnected
with Cray Aries network. Each Haswell node has 32 cores
(64 hardware threads) running at 2.3 GHz , and 128 GB
DDR4 2133 MHz memory; each KNL node has 68 cores
(272 hardware threads) running at 1.4 GHz, and 96 GB
DDR4 2400 MHz memory. Cori runs Cray Linux environment
version 7.0.UpO1 with Linux kernel version 4.12. All of the
computations were done using Cori’s burst buffer [20], the
most suitable file system for writing checkpoint images on
Cori.

We evaluated MANA-2.0 using two commonly used ap-
plications at NERSC: VASP, a materials science code and
Gromacs, a molecular dynamics code. Two versions of VASP
were tested: VASP 5 (5.4.4), a pure MPI code and VASP 6
(6.2.1), a hybrid OpenMP + MPI code. Both VASP versions
were compiled with an Intel compiler (v2019.3.199) and were
linked to Cray MPICH (7.7.10), MKL (2019.3.199) and FFTW
(3.3.4) libraries. Gromacs (2021.02) was also compiled with
the Intel compiler 2019.3.199, and was linked to Cray MPICH
7.7.10, and FFTW 3.3.8.

Two branches of MANA were used in the experiments.
A relatively stable branch (interface7) with a higher runtime
overhead was used for checkpoint/restart experiments; another
branch (interface8) containing the runtime overhead fixes
was used in the runtime overhead tests. MANA is free and
open-source software [21]. Documentation of the internals of
MANA can be found at [19].

A. Running GROMACS at Scale

Gromacs was chosen to evaluate the scalability improve-
ment of MANA after the code enhancements described earlier.
Gromacs was run with MANA-2.0 on a AuCoo monolayer
system containing 407,156 atoms (nano particles in water).
This was a system studied in [22] by a NERSC user.

First, we evaluated the runtime overhead of MANA by
running the benchmark using 1 to 64 Haswell and KNL
nodes (strong scaling) with and without MANA. We used the
interface8 branch of MANA which contains a few overhead
fixes. We measured the Gromacs run time of 10,000 MD steps.
Figure 2 shows the results. The blue and red bars show the
run time of Gromacs when running natively and under MANA,
respectively; the yellow line shows the run-time ratio between

mmm Native Run == Run with MANA Run Time (MANA vs Native)

300 3.00

Run Time (secs)
= - N N
S a S &
o o o o
= NN
[9)) o [9)]
o o o

I3y
=}

(o,
o
Run Time (MANA vs Native)

I '. 1.00
|||I||I 1d .1

0 I I . 0.00
32 64

128 256 512 1024 2048
MPI Ranks (Haswell)

mmm Native Run mmm Run with MANA Run Time (MANA vs Native)

3000 160 _
140 2
2500 402
0 120 2
[
g 2000 100 2
F g
£ 1500 080 Z
= s
c 1000 060 =
& 040 £
500 II 0202
0 Il sE um == 000 &

32 B4 128 256 512 1024 2048

MPI Ranks (KNL)

Fig. 2. Run time comparison between running Gromacs natively (blue bars)
and under MANA (red bars) on Haswell (upper panel) and KNL (lower panel)
nodes. The yellow line represents the run-time ratio between the MANA-
enabled and native runs. Experiments were run on Cori Haswell and KNL
nodes using 32 ranks per node. For the KNL runs, each task was run with
two OpenMP threads.

the MANA-enabled and native runs. One can see that for KNL
runs, the runtime overhead is not significant except at 2048
ranks, but for Haswell runs, except 1 and 2 node runs (< 4%),
the runtime overhead is still excessively high and increases
rapidly when the number of processes increases. We continue
our efforts to further reduce MANA’s runtime overhead by
addressing the remaining causes of the overhead.

Next, we tested MANA’s checkpoint/restart capability at
scale. We ran Gromacs with MANA using 2048 ranks using
64 Haswell and KNL nodes (32 ranks/node), respectively.
For the KNL runs we used two OpenMP threads per rank.
We checkpointed the job every 5 minutes, terminated it
every 8 minutes, and then restarted it. MANA was able to
checkpoint/restart the job many times reliably running at 2048
ranks. Figure 3 shows the checkpoint/restart overheads of the
first 10 checkpoint/restart for both Haswell and KNL runs.
The yellow line shows the total checkpoint image sizes. While
the figure shows the scalability improvement of MANA, it
also exposes multiple issues when running at this scale. First,
the checkpoint file size increases over time both on Haswell
and KNL runs. For example, the total file size grows from
1.4 TB at the first checkpointing to about 5 TB at the 10th
checkpointing with Haswell runs. Second, when running under
MANA the job uses significantly more memory than the native
run and its memory usage increases over time, while the native
run has a consistent memory footprint throughout the run.
Third, we observed that occasionally checkpointing does not
occur at the specified checkpoint interval. These issues are

mmm Ckpt Time (secs) mmm Restart Time (secs)
180

Ckpt Image Size (TB)

o

o
160
14 5 'E/
7 10 I
@ 120 42
2 400 £
o 30
E 80 (%
[
Q 60 2 %
= 40 @
1E
20 =
0 0 £
3 O
Restart Counts (Haswell
mmm Ckpt Time (secs) mmm Restart Time (secs) Ckpt Image Size (TB)
300 3
m
250 25 %
@ N
3 200 2 »
(%))
o 150 1.5 &
£ T E
[-
100 1 a
o <
Q [8)
50 05 5
k]
0 o F
9

Restart Counts KNL

Fig. 3. Checkpoint/Restart overhead of MANA when running Gromacs with
2048 ranks on Haswell (upper panel) and KNL (lower panel) nodes on Cori’s
Burst Buffer. The blue and red bars show the checkpoint and restart time,
respectively; the yellow line indicates the total size of the checkpoint files.

KNL B Haswell

]]

J

& 40001

5

<3000+

€

(s}

© 2000

5

“ 1000+
O_

32 64 128 256

Num. of MPI ranks

Fig. 4. Number of collective communications per second per rank for VASP-5
on Haswell and KNL nodes. When doubling the number of ranks, the growth
in the number of collective calls is roughly logarithmic in the number of
nodes. This figure was cited from [18].

under investigation now. We identified a memory leak in the
code, and implemented a fix in the latest development branch
of MANA. However, the latest development branch can not
restart at 2048 ranks for some unknown reason. So we still
use the result of the stable branch.

Note that while Gromacs does not scale well when using
more processes with this benchmark (partially because we did
not carefully tune the run for optimal load balance), this does
not impact our goal of demonstrating the scalability of MANA.

B. VASP: a resource for robustness testing

We tested MANA-2.0 with VASP, a materials science code
that consumes the most computing cycles at NERSC. VASP

has been extensively tested with MANA using the representa-
tive workloads summarized in Table I. These benchmark cases
were chosen to cover the representative VASP workloads and
to exercise different code paths. For example, the first test case,
denoted as PdO4 in the table, is a PdO slab containing 348
atoms. It was chosen to test the most commonly used code
path, the DFT functional calculations using the RMM-DIIS
iteration scheme. Some of the test cases were actual NERSC
users’ production jobs.

Many of the MANA code enhancements described earlier
arose from fixing bugs and issues exposed by these VASP jobs
when running them in production settings. As of this writing
MANA (interface7) can successfully checkpoint and restart all
the benchmark cases listed in Table I with both VASP 5 (MPI)
and VASP 6 (OpenMP + OpenMP). For VASP 6 we needed to
disable the use of MPI_Win_ family APIs at compilation time
to use MANA, because they are not yet supported in MANA.
There are still other issues to resolve, e.g., for example, some
of the VASP jobs run into segmentation faults after many
rounds of checkpoint/restart.

Note that VASP is highlighted for its intensive use of
MPI collective communication. While users typically run
VASP across a small number of nodes due to its low-latency
communication requirements, VASP invokes an unusually high
frequency of MPI collective calls per second, as shown in Fig-
ure 4. This presents an additional challenge: runtime overhead.

C. MANA “interface8”: initial successes in reducing runtime
overhead

VASP was chosen to evaluate improvement in runtime
overhead. We tested the CaPOH workload with 128 ranks
on both Haswell nodes and KNL nodes. Table II shows the
performances of the native VASP program, and VASP run
under the MANA interface7 branch and MANA interface8
branch.

The MANA interface7 branch focuses on scalability and
stability; the interface8 branch is our first attempt to reduce
the runtime overhead. Currently, interface8 includes the hybrid
two-phase-commit algorithm and removes lambda functions in
the code base. From the table, we can see that on Haswell
nodes, the runtime overhead reduced from 64% to 40%. On
KNL nodes, the runtime overhead reduced from 99% to 46%.
As discussed in the algorithm section, there are additional
known sources of runtime overhead. We continue our efforts
to solve each problem and reduce MANA’s runtime overhead.

V. RELATED WORK

The history of checkpointing of MPI is littered with ap-
proaches that tried too closely to tie the checkpointing process
to a specific underlying network.

There have also been a series of checkpointing approaches
for particular implementations of MPI. These include: the
Open MPI checkpoint-restart service [5], [23], the MVAPICH2
checkpoint-restart service [4] — both of which temporarily
disconnect the network and then delegate to BLCR [24] for
checkpointing an individual process. Similarly, MPICH-V [2]

VASP TEST CASES FOR MANA-2.0. THESE CASES WERE CHOSEN TO COVER REPRESENTATIVE WORKLOADS AND TO EXERCISE DIFFERENT CODE PATHS.

TABLE I

[H PdO4 [GaAsBi-64 [CuC_vdw [Si256_hse [B.hRIOS_hse[PdO2 [CaPOH [WOSiH [GaAs-GW0]
Electrons (Ions) || 3288 (348) | 266 (64) 1064 (98) 1020 (255) | 315 (105) 1644 (174) | 288 (44) 80 (18) 8(2)
Functional DFT DFT VDW HSE HSE DFT DFT HSE GWO0
Algo RMM BD+RMM |RMM CG CG RMM BD BD+RMM |BD

(VeryFast) | (Fast) (VeryFast) | (Damped) (Damped) (VeryFast) | (Normal) (Fast) (Normal)
KPOINTS 111 444 331 111 111 111 211 333 333
TABLE 11

PERFORMANCE COMPARISON OF THE VASP CAPOH WORKLOAD WITH 128 RANKS.

[[[Native [MANA interface7 [MANA interface8 |
Haswell 25s 41s 35s
KNL 69s 137s 101s

disconnects a transport layer channel of MPICH (primarily
based on TCP). It then delegates to the Condor package for
checkpointing single-threaded individual processes [25].

Each of the above packages is implemented within a
particular implementation of MPI. In contrast, the origi-
nal DMTCP [3] (for TCP), and an InfiniBand plugin for
DMTCP [6] are independent of the MPI implementation, and
do not disconnect the network during checkpoint. But both are
otherwise tightly bound to the underlying network.

An approach to support mobile MPI applications exists,
albeit while partially abandoning application transparency
and requiring re-compilation of the MPI application source
code [26]. And CIFTS provides a fault-tolerant BLCR-based
“backplane” [27].

MANA then introduced the split-process model for check-
pointing of MPI [1]. Details are in Section II-A. Efforts
to deploy MANA at NERSC are described in [7], while
MANA was previously updated for compatibility with the
latest NERSC environment and to remove code specific to one
environment, as described in [9]. The first work [1] demon-
strated transparent checkpointing of GROMACS [10] over
MPI for 512 ranks over 64. The second work [9] demonstrated
transparent checkpointing for 64 ranks with GROMACS and
512 ranks with the HPCG benchmark [28].

Note that transparent checkpointing of MPI was already
demonstrated to the level of 16,368 ranks for NAMD and
32,368 ranks for HPCG (using 1/3 of the supercomputer) on
Stampede at TACC in 2016 [29]. That early work was based
on DMTCP’s transparent support for InfiniBand, and that code
likely would not on today’s machines using either Cray GNI
or extensions to the original InfiniBand. Further, no effort was
made in the current work to test the limits of scalability of
MANA-2.0.

VI. CONCLUSION

This report on MANA-2.0 represents encouraging progress
toward a robust, reliable package for transparent checkpointing
that will be future-proof. There are two important lessons from
this work. First, each individual subsystem for MANA-2.0
must be carefully designed with appropriate data structures
and algorithms to enable an MPI computation to survive

over the checkpoint-restart barrier. The subsystems requiring
particular support are: point-to-point (translating MPI_Send
to MPI_Isend, etc.); MPI collective communication (allowing
each MPI rank to proceed until all MPI ranks have reached
a safe point with no MPI rank currently in an MPI call);
decisions whether to wait for an MPI call to complete, or to
virtualize and replay at restart time; MPI requests (virtualizing
those requests and deciding when the memory of old requests
can be reclaimed); and in the case of asynchronous MPI
calls, deciding which ranks must replay point-to-point and
collective calls in order to re-instantiate vitual MPI requests
for completion after restart.

Second, while MANA-2.0 now runs reliably over Cray’s
GNI network interconnect and library, its design is expected
to also run equally well on the future Perlmutter’s HPE Cray
Slingshot network interconnect on Perlmutter (currently the
#5 supercomputer in the world, still being tested). MANA
is still a work in progress. However, it runs reliably with
GROMACS (emphasizing MPI point-to-point communication)
and with VASP (emphasizing MPI collective communication).
For running at larger scales, in order to write the checkpoint
images of the many ranks in parallel, it has been found
necessary to use Cori’s high-performance burst buffer with
access to a faster file system.

In the case of GROMACS, the currently chosen GROMACS
input resulted in an imbalanced configuration at 2048 ranks —
even for running GROMACS natively. Nevertheless, MANA-
2.0 scales reasonably to 2048 ranks. In future work, we will
design a custom GROMACS input suitable for testing at very
large scale.

REFERENCES

[1] R. Garg, G. Price, and G. Cooperman, “MANA for MPI: MPI-agnostic
network-agnostic transparent checkpointing,” in Proc. of the 28th
Int. Symp. on High-Performance Parallel and Distributed Computing.
ACM, 2019, pp. 49-60.

A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V project: A multiprotocol automatic fault-tolerant MP1,” The
International Journal of High Performance Computing Applications,
vol. 20, no. 3, pp. 319-333, 2006.

J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS’09).
Rome, Italy: IEEE, 2009, pp. 1-12.

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

(10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent
checkpoint/restart for MPI programs over InfiniBand,” in Int. Conf. on
Parallel Processing (ICPP’06), 2006, pp. 471-478.

J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The
design and implementation of checkpoint/restart process fault tolerance
for Open MPL,” in 2007 IEEE International Parallel and Distributed
Processing Symposium. 1EEE, 2007, pp. 1-8.

J. Cao, G. Kerr, K. Arya, and G. Cooperman, “Transparent checkpoint-
restart over InfiniBand,” in ACM Symposium on High Performance
Parallel and and Distributed Computing (HPDC’14). ACM Press,
2014.

Z. Zhao, R. Hartman-Baker, and G. Cooperman, “Deploying check-
point/restart for production workloads at NERSC,” in International
Conference for High Performance Computing Networking Storage and
Analysis, 2020.

“Top500 supercomputers (June, 2021),” https://www.top500.org/lists/
top500/2021/06/, 2018, [Online; accessed Aug., 2021].

P. S. Chouhan, H. Khetawat, N. Resnik, T. Jain, R. Garg, G. Cooperman,
R. Hartman-Baker, and Z. Zhao, “Improving scalability and reliability
of MPI-agnostic transparent checkpointing for production workloads
at NERSC (extended abstract),” in First International Symposium on
Checkpointing for Supercomputing (SuperCheck’21), 2021, https://arxiv.
org/abs/2103.08546; from https://supercheck.Ibl.gov/resources.
“Gromacs,” http://www.gromacs.org/.

“Gromacs ADH benchmark,” ftp:/ftp.gromacs.org/pub/benchmarks/
ADH_bench_systems.tar.gz.

“VASP,” https://www.vasp.at/.

R. Garg, “Personal Communication (from author of original MANA
paper),” Sept., 2021.

Message Passing Interface Forum, “MPI: A message-passing interface
standard (version 3.1),” Jun. 4, 2015. [Online]. Available: https:
/Iwww.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

——, “Summary of the semantics of all operation-related MPI
procedures,” Feb. 24, 2021. [Online]. Available: https://www.mpi-forum.
org/docs//mpi-4.0/addendum-Semantics.pdf

Cray, “Understanding communication and mpi on cray xc40,” 2014.
[Online]. Available: https://www.hpc.kaust.edu.sa/sites/default/files/files/
public//KSL/150607-Cray_training/3.05_cray_mpi.pdf

J. Zhang, B. Long, K. Raffenetti, and P. Balaji, “Implementing the mpi-
3.0 fortran 2008 binding,” in Proceedings of the 21st European MPI
Users’ Group Meeting, 2014, pp. 1-6.

AUTHORS OMITTED DURING DOUBLE-BLIND REVIEW, “Re-
moving kernel overhead in MANA's split-process model for checkpoint-
ing (tentative title),” in Proceedings of SuperCheck Workshop at SC’21
(submitted to this workshop), 2021.

MANA team, “MANA plugin documentation,”
2021. [Online]. Available: https://docs.google.com/document/d/
1pT25gvMNeT1Vz4SU6Gp4HxIMGLIKK8ZK-sSOwtuSR50

“Cori’s burst buffer,” https://docs.nersc.gov/filesystems/
cori-burst-buffer/.

MANA team, “MANA software (refactoring branch),” 2021. [Online].
Available: https://github.com/mpickpt/mana/tree/refactoring

G. Brancolini et al., “The manuscript is under review,” JOURNAL
OMITTED, 2021.

J. Hursey, T. I. Mattox, and A. Lumsdaine, “Interconnect agnostic
checkpoint/restart in Open MPL” in Proc. of 18th ACM Int. Symp. on
High Performance Distributed Computing, 2009, pp. 49-58.

P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux clusters,” Journal of Physics: Conference Series,
vol. 46, no. 1, p. 494, 2006.

M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint
and migration of UNIX processes in the Condor distributed processing
system,” https://research.cs.wisc.edu/htcondor/doc/ckpt97.ps, University
of Wisconsin, Madison, Wisconsin, Technical Report 1346, April 1997.
R. Fernandes, K. Pingali, and P. Stodghill, “Mobile MPI programs in
computational grids,” in Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, 2006,
pp. 22-31.

R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Hargrove, A. Geist,
D. Panda, A. Lumsdaine, and J. Dongarra, “CIFTS: A coordinated
infrastructure for fault-tolerant systems,” in Int. Conf. on Parallel Pro-
cessing (ICPP’09), September 2009, pp. 237-245.

“HPCG,” https://www.hpcg-benchmark.org/.

[29] J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni,

J. Vienne, and G. Cooperman, “System-level scalable checkpoint-restart
for petascale computing,” in 22nd IEEE Int. Conf. on Parallel and
Distributed Systems (ICPADS’16). 1EEE Press, 2016, pp. 932-941.

https://www.top500.org/lists/top500/2021/06/
https://www.top500.org/lists/top500/2021/06/
https://arxiv.org/abs/2103.08546
https://arxiv.org/abs/2103.08546
https://supercheck.lbl.gov/resources
http://www.gromacs.org/
ftp://ftp.gromacs.org/pub/benchmarks/ADH_bench_systems.tar.gz
ftp://ftp.gromacs.org/pub/benchmarks/ADH_bench_systems.tar.gz
https://www.vasp.at/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs//mpi-4.0/addendum-Semantics.pdf
https://www.mpi-forum.org/docs//mpi-4.0/addendum-Semantics.pdf
https://www.hpc.kaust.edu.sa/sites/default/files/files/public//KSL/150607-Cray_training/3.05_cray_mpi.pdf
https://www.hpc.kaust.edu.sa/sites/default/files/files/public//KSL/150607-Cray_training/3.05_cray_mpi.pdf
https://docs.google.com/document/d/1pT25gvMNeT1Vz4SU6Gp4Hx9MGLfkK8ZK-sSOwtu5R50
https://docs.google.com/document/d/1pT25gvMNeT1Vz4SU6Gp4Hx9MGLfkK8ZK-sSOwtu5R50
https://docs.nersc.gov/filesystems/cori-burst-buffer/
https://docs.nersc.gov/filesystems/cori-burst-buffer/
https://github.com/mpickpt/mana/tree/refactoring
https://research.cs.wisc.edu/htcondor/doc/ckpt97.ps
https://www.hpcg-benchmark.org/

	Introduction
	Background
	Split processes
	Overview of Semantic Components of MANA
	Virtualized MPI objects

	Novel algorithms for key components of MANA
	Virtualized requests
	Drain send-receive for point-to-point communication
	Keep a list of only the active communicators for the sake of restart
	Adding a barrier before collective communication
	Deadlock between MPI_Bcast and MPI_Send/Recv
	Handling MPI named constants in Fortran
	The FS register
	C++ lambda functions
	Other sources of runtime overhead
	Stragglers
	Globally unique IDs: MPI_Translate_group_ranks
	Hybrid Phase 2 (out of scope for this article)
	Lessons learned

	Experimental Evaluation
	Running GROMACS at Scale
	VASP: a resource for robustness testing
	MANA ``interface8'': initial successes in reducing runtime overhead

	Related Work
	Conclusion
	References

