
CRAC: Checkpoint-Restart Architecture for CUDA
with Streams and UVM

Twinkle Jain*

Khoury College of Computer Sciences

Northeastern University

Boston, USA

jain.t@northeastern.edu

Gene Cooperman*

Khoury College of Computer Sciences

Northeastern University

Boston, USA

gene@ccs.neu.edu

Abstract—The share of the top 500 supercomputers with
NVIDIA GPUs is now over 25% and continues to grow. While
fault tolerance is a critical issue for supercomputing, there does
not currently exist an efficient, scalable solution for CUDA
applications on NVIDIA GPUs. CRAC (Checkpoint-Restart Ar-
chitecture for CUDA) is a new checkpoint-restart solution for
fault tolerance that supports the full range of CUDA applications.
CRAC combines: low runtime overhead (approximately 1% or
less); fast checkpoint-restart; support for scalable CUDA streams
(for efficient usage of all of the thousands of GPU cores);
and support for the full features of Unified Virtual Memory
(eliminating the programmer’s burden of migrating memory
between device and host). CRAC achieves its flexible architecture
by segregating application code (checkpointed) and its external
GPU communication via non-reentrant CUDA libraries (not
checkpointed) within a single process’s memory. This eliminates
the high overhead of inter-process communication in earlier
approaches, and has fewer limitations.

Keywords—Checkpointing, CUDA, Unified Virtual Memory,
Parallel Processing, Split Processes

I. INTRODUCTION

General-purpose GPU computing continues to become more

important in supercomputers and in large- and medium-size

clusters. For example, starting from zero GPUs in 2010, the

number of clusters with NVIDIA GPUs has reached 136 out

of 500 in the Nov., 2019 listing of the top 500 supercomput-

ers [1], as seen in the next graph.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0

50

100

#
 T

O
P
5
0
0
 u

s
in

g
 N

V
ID

IA
 G

P
U

s NVIDIA GPUs among
TOP500 supercomputers

This work introduces CRAC (Checkpoint-Restart Architec-

ture for CUDA) for transparently checkpointing CUDA on

GPUs. Transparent checkpointing for CPUs (as opposed to

GPUs) has long been important in long-running computations.

Transparent checkpointing is widely available for Linux HPC

applications, including MPI. Three notable examples of trans-

parent checkpointing are DMTCP [2] (multi-host and MPI),

∗This work was partially supported by National Science Foundation Grant
OAC-1740218 and a grant from Intel Corporation.

BLCR [3] (single-host and MPI), and CRIU [4] (primarily for

single-host). However, that ability to transparently checkpoint

computations using GPUs has been notably lacking.
Transparent checkpointing is important in HPC for at least

four reasons:

(a) long-running batch jobs that might need more time to

complete than the typical 24-hour job allocation slot;

(b) fault tolerance (especially concerning GPU soft errors);

(c) backfill policies for efficient scheduling of batch queues;

and

(d) process migration in the cloud, for example to exploit spot

instances in the cloud for cost-effective computing [5],

and for other just-in-time strategies.

The ability to checkpoint GPUs is even more pressing as

clusters and supercomputers continue to scale to an increased

number of GPUs. This is because of the vulnerability of

GPUs to soft errors. A series of papers in the literature

has highlighted the issue of fault tolerance for GPUs in the

presence of soft errors [6]–[9]. In particular, NVIDIA GPUs

do not have the same level of error protection of RAM as is

the case for the high-end host computers used in clusters.
Finally, transparent checkpointing (as opposed to

application-specific checkpointing) is especially important

in order to relieve the application developer of the burden

of coding for checkpointing. There are several anecdotes in

the community of long-standing computational toolkits that

“used to” have an application-specific checkpointing module,

but that specialized module gradually became out-of-date as

additional stateful parameters were added to a model.
Further, application-specific checkpointing typically has

limitations, in that a checkpoint may be taken only at each

iteration of the outermost loop. This is done in order to avoid

the complication of restoring the stack as it existed at runtime.

These limitations imply that application-specific checkpointing

is often incompatible with on-demand checkpointing, which

is required in the case of spot instances, or when a large

high-priority job arrives and existing jobs must immediately

be checkpointed.
Ironically, while the need for transparent checkpointing of

GPUs has grown in the last decade, the support for transparent

checkpointing of GPUs has diminished. A series of results

for transparent checkpointing of GPU [10]–[14] have stopped

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

working as of CUDA 4.0. This is because CUDA 4.0 intro-

duced, in 2011, UVA (Unified Virtual Addressing between host

and GPU device). This was later refined, with CUDA 6.0, to

UVM (Unified Virtual Memory). All previous checkpointing

efforts relied on the ability to save and restore the CUDA

library in memory. But now that the virtual memory address

space is shared between GPU device and host, any attempt

to restore the checkpointed CUDA library and associated

allocated memory at their original address will create incon-

sistencies between the host and GPU device address space.

Two more recent efforts at checkpointing (CRCUDA [15]

and CRUM [16]) try to get around this problem by creating

separate proxy processes. CRCUDA presents a preliminary

attempt whose overhead was apparently never evaluated on

real-world programs. CRCUDA’s github repo [17] has not

been active since 2015. CRUM presents a more complete

solution, but it continues to have limitations.

The problem with both CRCUDA and CRUM is that their

approach centers around passing all CUDA calls from the

application process to a CUDA library resident in an indepen-

dent proxy process. This requires copying buffers between the

application process and proxy process before and after each

CUDA library call. This has three inherent problems:

(a) Copying buffers creates a high runtime overhead. Modern

CUDA applications may need to launch 1,000 CUDA

kernels per second and more. (CRUM reports 6% to 12%

overhead [16, (Section IV.B, figure 4(b))].)

(b) CRUM’s support for UVM is incomplete. The issue is

that UVM allows for hardware-supported page faults

between host and device whenever one or the other

updates the memory in a unified page. CRUM is lim-

ited to supporting applications that follow this pattern:

CUDA-call, read from UVM, modify, write to UVM, next

CUDA-call. Not all applications follow this pattern. See

CUDA call [16, (Section III.B)] for details.

(c) Neither CRCUDA nor CRUM appear to have been tested

in checkpointing the maximum permitted number of

concurrent CUDA streams. We speculate that the reason

is that both approaches sustained a significant overhead in

making a CUDA call, since this required copying memory

buffers (arguments to the CUDA call) to an independent

proxy process. The essence of using CUDA Streams

is to execute multiple CUDA kernels simultaneously

(in multiple streams). This parallelism implies a higher

frequency of CUDA kernel calls, placing more stress on

the memory transfers to the proxy process.

In summary, this work makes three important contributions

that may be summarized as (a) low runtime overhead, (b) ef-

ficient support for UVM, and (c) efficient support for many

concurrent CUDA streams. More explicitly:

1) Low runtime overhead: Previous checkpointing support

for CUDA 4.0 and later had unacceptably high runtime

overhead (for example, CRUM’s 6% to 12% [16]). The

single-address space approach of this work enables more

efficient, direct passing of pointers to CUDA kernels upon

launch. While doing this, it retains isolation of the CUDA

application program from the helper (proxy) program that

“talks” to the GPU.

2) Efficient and complete UVM support: There are no com-

promises in the UVM support. CRUM’s shadow page

synchronization restricts UVM-based applications solely

to a single read-modify-write cycle between CUDA

kernel launches [16, Section III-B]. Further, CRUM’s

strategy fails when two concurrent CUDA streams write

to the same memory page.

3) Many concurrent CUDA streams: The new approach

scales well with many concurrent CUDA streams. The

lack of previous experiments in the literature for more

than two concurrent CUDA streams confirms the novelty

of this work’s support for many concurrent streams.

Finally, CRAC is free and open-source software. The current

version of CRAC is found at: https://github.com/DMTCP-

CRAC/CRAC-early-development.git. In the future, the newest

version of CRAC will be included as a plugin in the main-

stream DMTCP [18], which is open source.

In the remainder of this work, Section II describes the

approach of three previous systems for transparent checkpoint-

ing of CUDA: CheCUDA (basic approach), and CRCUDA,

and CRUM (proxy-based approaches). It also describes the

deficiencies of those systems for use in HPC. Section III

describes the new single address-space approach of CRAC.

Section IV presents experimental results demonstrating the

performance and generality of the new approach. Section V

then describes the related work. Section VI presents the

conclusion and future work.

II. BACKGROUND

We highlight the history of CUDA and earlier approaches to

transparently checkpoint CUDA applications. This highlights

why older approaches stopped working with the introduction

of CUDA-4.0, and a conceptually new approach was required.

A. The Historical Evolution of CUDA

As described in the introduction, previous mechanisms for

transparent checkpointing [10]–[14] were made incompatible

by the introduction of Unified Virtual Addressing (UVA) in

CUDA 4.0. UVA was introduced in CUDA-4.0, and was later

refined into Unified Virtual Memory (UVM) in CUDA 6.0.

UVM operates in analogy with the introduction of virtual

memory for UNIX. The CUDA UVM-enabled hardware and

software execute on-demand paging, so that application pro-

grammers don’t need to explicitly swap memory segments in

and out of the GPU device. CUDA streams were introduced

with CUDA-3.0 (Fermi GPUs).

B. A First Attempt at Checkpoint-restart: CheCUDA prior to

CUDA 4.0

Here, we describe the architecture of CheCUDA [12],

built upon CCUDA-2.2 in 2009, as representative of the

general approach. The basic steps are: (a) to “drain

the queue” of tasks (of pending CUDA kernels) using

https://github.com/DMTCP-CRAC/CRAC-early-development.git
https://github.com/DMTCP-CRAC/CRAC-early-development.git

cudaDeviceSynchronize or cuCtxSynchronize;

(b) to copy persistent GPU state associated with resources

held by the CUDA library to host memory; (c) to destroy all

CUDA resources; (d) to checkpoint on the host side using

BLCR [3]; and to restart by reversing these steps. Creation

of CUDA resources is recorded prior to checkpoint time, and

then restored during restart in a classic log-and-replay strategy.

A problem was encountered with CheCUDA and related

approaches for checkpointing GPUs [10]–[14] in 2011. This is

the year when NVIDIA introduced one more CUDA resource

as part of the CUDA 4.0 library: the unified virtual address

(UVA) facility. CUDA did not provide an API to save the state

of UVA and later restore it. This was not surprising, since the

UVA resource is shared between device and host, and so it

would be difficult to provide a user API to restore it. Previous

CUDA resources were resident solely on the GPU.

C. A Second Attempt at Checkpoint-restart: Proxy-based so-

lutions for CUDA 4.0 and later

In 2011, CUDA 4.0 introduced UVA (Unified Virtual Ad-

dressing) [19]. CUDA 6.0 then introduced UVM (Unified Vir-

tual Memory) in 2013 [20], exacerbating further the difficulty

of saving and restoring UVA or UVM state. UVM on Pascal

and later GPUs supports hardware page faulting of host pages

into the GPU and vice versa.

CUDA memory allocations were then a resource that could

no longer be saved and restored, since a memory allocation

included a virtual memory mapping between host and device.

That mapping is managed by the NVIDIA portion of the

operating system, and it was not exposed to the CUDA

programmer.

To overcome this, CRCUDA [15] and CRUM [16] took a

proxy-based approach. But CRCUDA doesn’t support UVA or

UVM. CRUM supports UVM through shadow memory [16,

Algorithm 1], but at the cost of high runtime performance,

and covering only standard CUDA applications following the

read-modify-cudaCall pattern.

III. THE DESIGN AND IMPLEMENTATION OF CRAC

CRAC provides the ability to save and restore the state

of CUDA by first using CUDA-specific save/restore opera-

tions, and then delegating to a traditional checkpoint-restart

package. Conceptually, CRAC could have used any of the

three most popular systems for transparent checkpointing:

BLCR [3], CRIU [4], and DMTCP [2]. However, CRIU does

not support checkpointing of multiple hosts and BLCR is

no longer actively maintained. In the end, the support of

DMTCP for process virtualization and plugins [21] makes

it easier to add modular support for CUDA without having

to excessively understand details of the internals of the host

checkpointing package. Further, DMTCP remains the only

transparent checkpointing package to operate at petascale,

as originally demonstrated in 2016 [22], when it was used

to checkpoint two petascale computations: MPI-based HPCG

(using 32,752 cores) and MPI-based NAMD (using 16,368

cores) [22].

The discussion of CRAC is next split into two parts: design

and implementation.

A. The Design of CRAC

The problems with previous approaches to transparently

checkpointing CUDA using proxies were highlighted in the

introduction and Section II: high runtime overhead due to

inter-process communication; and the difficulty of supporting

certain newer CUDA resources (e.g., UVA/UVM and multiple

CUDA streams) when the CUDA API did not expose a

mechanism for easily saving and restoring those resources.

The inter-process communication bottleneck between a

CUDA application process and a proxy process is an essential

bottleneck of CRCUDA and CRUM. CRAC’s solution is to

combine the application and proxy into a single process, whose

address space contains two independent programs, each with

their own text segment, data, heap, and runtime libraries.

The application program and a proxy program are loaded

separately into the same address space, where the Linux kernel

views them as a single process. Yet, the application and

the proxy (also called a helper program) are linked to two,

independent runtime libc libraries and two runtime loaders

(ld.so).

The application program that was loaded into memory is

linked to a dummy CUDA library that passes all CUDA calls

to the proxy program that was loaded. The proxy program

contains the active CUDA library, and only the code of

the proxy program that communicates with the GPU. For a

diagram illustrating the relationship, see Figure 1.

Checkpoint and restart then proceed more or less as de-

scribed in Section II-B (CheCUDA prior to CUDA 4.0).

However, there is a crucial distinction. We do not save the

memory of the proxy program. Hence, we are not saving the

memory of the active CUDA library that talks to the GPU.

The CUDA library includes stateful memory associated with

CUDA resources such as UVA/UVM-based memory.

On restart, we will load a completely new copy of the proxy

program. The CUDA library of the new copy of the proxy has

its original state. The stateful memory of the CUDA library is

put back in its initial state. This new architecture again makes

feasible the classical log-and-replay of CheCUDA and other

applications. The use of log-and-replay in CRAC is described

fully later in this section.

The literature describes two ways to implement this single

address-space design: split processes [23] (two programs in

the same address space) and process-in-process [24] (using

Linux’s dlmopen to offer independent namespaces, Using

dlmopen is superficially attractive, due to the greater simplicity

of this approach. Therefore, we analyze this case first.

a) Single address-space design: process-in-process:

Process-in-process [24] was introduced as a mechanism to

reduce the overhead in inter-process communication between

two MPI ranks (processes) that coexist on the same host.

By placing the two ranks within a single process by using

dlmopen, runtime overhead was reduced. It became possible

to directly pass pointers between the two MPI ranks, instead

of relying on inter-process communication techniques.

This simple approach is attractive, and it captures many

of the goals of split processes, as depicted in Figure 1.

However, this approach is not conducive to our requirement

of tracking memory associated with the CUDA application

program, versus the helper program. The NVIDIA compiler

(nvcc) links both the CUDA application and the helper

program with several libraries — in particular, the NVIDIA

CUDA library and the runtime library. It becomes difficult to

associate each memory region according to whether it was

loaded by a library for the CUDA application or a library for

the helper program.

b) Single address-space design: split processes: Split

processes [23] were introduced as a mechanism to separate

the MPI and network libraries from the end user’s MPI

application. The split-process approach is more or less the

same as described for CRAC near the beginning of Sec-

tion III-A. There is an important distinction in that in the

case of MPI, the proxy or helper program was statically

linked [23, Section 3.6]. NVIDIA encourages CUDA programs

to be linked dynamically. Even when the -static flag is

passed to NVIDIA’s compiler, some NVIDIA libraries remain

dynamically linked.

In this scheme, the helper program is loaded first, resulting

in a new process. That process then directly loads the CUDA

application into memory. It is important to track all memory

allocations (all calls to mmap) by the lower half, so that

they are not checkpointed. To accomplish this, a program

loading mechanism is used that imitates the way in which

the kernel loads an application. (The kernel first loads an

ELF interpreter into memory, since the ELF interpreter is

structured as a statically linked executable with text, data,

and stack. The ELF interpreter then loads the dynamically

linked target executable.) The loading mechanism is modified

to interpose on all calls to mmap(). This allows our kernel

loader to load each memory region (including the several

NVIDIA libraries) into a restricted portion of the address

space, using the MAP_FIXED parameter. This approach also

yields the illustration in Figure 1, but it provides a mechanism

for associating each memory region conceptually with an

“upper-half” or “lower-half” portion of the address space.

c) Log-and-replay: Prior to CUDA-4.0, copying the

persistent state of CUDA was exemplified by copying two

allocation arenas: cudaMallocHost on the host; and

cudaMalloc on the device, or GPU. Just prior to a check-

point, the data on host and device was copied to a special

location, and it was restored on restart. However, CUDA-4.0

and later introduced cudaMallocManaged for managed

memory, used with UVM. CRCUDA cannot support UVM

at all, and CRUM supports it imperfectly, as described in

Section II-C.

Hence, copying the full persistent state at checkpoint time

has become more of a challenge since CUDA-4.0. CheCuda

and earlier approaches had destroyed any CUDA resources

prior to checkpointing, and restored them on resume and

restart. This worked because the persistent resources of the

CUDA library prior to CUDA 4.0 could be logged and later

restored. With the advent of UVA/UVM in CUDA-4.0 and

later, the unified virtual memory is an essential resource that

could not be recovered once destroyed. We infer from our own

tests that the use of UVM had modified the CUDA library’s

state, and the restored CUDA library was then inconsistent

when called after restart.

Copying the persistent state would require reverse-

engineering the CUDA library, which is all but impossible, due

to the closed-source nature of CUDA. But the CUDA library

has internal bookkeeping information on the contents of those

three allocation arenas. Upon restart, each allocation must be

recreated at the original lower-half address that existed prior

to checkpoint.

By interposing on the cudaMalloc family of CUDA calls, a

log-and-replay approach is used by CRAC to copy to the upper

half and later restore the memory regions, in the same order as

when they were allocated. This benefits from the determinism

in the implementation of CUDA internals for allocation. On

restart, a fresh CUDA library in the lower half would allocate

the memory regions at the same addresses as originally seen.

This traditional log-and-replay approach described in Sec-

tion II is compatible with split processes only when targeting

smaller CUDA applications. But this widely used log-and-

replay approach is observed to fail on more complex applica-

tions. It fails for two reasons. In order to apply the approach

faithfully and take advantage of determinism in the CUDA

library, it would be necessary to re-execute (replay) in the

original ordering all calls in the family of cudaMalloc and

cudaFree. Second, this approach becomes more difficult when

supporting concurrent streams, since two threads on the host

may concurrently make calls to cudaMalloc, which would

require an extra global lock on all calls to cudaMalloc in

the lower-half library. The next section discusses the memory

management approach actually used by CRAC.

B. Implementation Issues

Having chosen the split process approach for CRAC, there

were several implementation issues arising for the case of

CUDA that were not present in the case of MPI.

1) Implementation: Issue of library-allocated memory: The

largest complexities of adapting split processes from MPI

to CUDA arise from the differing conventions of allocating

memory. The design of MPI assumes that calls to MPI will

employ caller-allocated memory: callers to the MPI library

pre-allocate buffers and pass them to MPI.

The design of CUDA assumes callee-allocated, or library-

allocated memory: the CUDA library in the lower half may

allocate its own internal buffers, and then return those buffers

to the calls. A good example is cudaMalloc to allocate host

memory for the application. This CUDA routine allocates its

own memory, and potentially invokes mmap to do so.

One can argue that an mmap call can be intercepted, in order

to do deterministic replay. However, we observe that a single

cudaMalloc call can make many calls to mmap. Moreover, the

LOWER HALF

 HELPER

libcCUDA APPLICATION

libcuda libc

GNU link map (doubly linked list) of dynamic libraries

GNU link map (doubly linked list) of dynamic libraries

GPU and kernel
device drivers

UPPER HALF:

LOWER HALF:

Array of function pointers into libcuda

(CRAC)

libcuda
stub

Fig. 1
Split Processes: The lower-half helper program is a tiny CUDA application that was loaded into the “lower half” of the virtual memory
address space. At the time of launch, it copied the entry points of CUDA library calls from the lower-half libcuda to an array of libcuda
entry addresses. When the main CUDA application was launched (in the upper half), it was launched under control of DMTCP. DMTCP
arranged to create a trampoline from the upper-half libcuda to the lower-half libcuda entry point, via the libcuda addresses found in the
array created by the lower-half helper program. Now, at runtime, when the end user’s CUDA application makes a call to the CUDA library,
the trampoline causes control to be passed to the lower-half libcuda. Later, at checkpoint time, only the memory in the upper half will be
saved. At restart time, a new lower-half CUDA program is loaded into memory, and it re-initializes the array of libcuda addresses. It then
restores the upper-half memory from the checkpoint image, and passes control back to the CUDA application. Note that libcuda represents
the CUDA runtime library here.

first cudaMalloc creates a large CUDA malloc arena through

mmap. This creation of the malloc arena may fall into the

middle of several other mmap calls. Subsequent cudaMalloc

calls might not call mmap at all. This produces two problems.

(a) It is impractical to interpose on many mmap calls in order

to identify the particular mmap calls of interest. (b) The active

CUDA malloc buffers to be checkpointed are generally a small

fraction of the full CUDA malloc arena.

To counter these problems, we log only the host or device

pointers to buffers that were created by a call from the cu-

daMalloc family of APIs. This improves CRAC performance

by avoiding unnecessary interceptions in the lower-half.

2) Implementation: Issue of memory overlapping: The

lower- and upper-half memory regions can appear anywhere in

the process address space. In DMTCP, one part of saving the

state of a running process includes reading the /proc/PID/maps

and saving memory regions. In /proc/PID/maps, two memory

regions with the same permissions get merged after allocation.

This makes it harder to decide if whole or part of a memory

region belongs to the upper half and must be checkpointed.

This has not been an issue in the case of MANA for MPI [23],

where the lower half is compact since it is compiled as a

statically linked executable.

Another issue that we observed is that when the library of

the lower half allocates memory pages, it may overwrite the

upper-half’s existing memory pages, and indeed, it may even

unmap some of the upper-half’s existing memory pages. This

could lead to silent memory corruption.

To counter these problems, CRAC tracks all the allocations

done by the upper half and also tries to consolidate memory

regions created by the upper half, as described in III-A0b.

3) Implementation: Saving the “library-allocated” arena:

Since CRAC interposes on the CUDA library in the lower half,

it can interpose on all calls to mmap(). Naively, one would

assume that for each of the cudaMalloc family of calls, there is

a single call to mmap(), which can be recorded and replayed.

This does not work, since a cudaMalloc call may make

multiple calls to mmap(). Or a single cudaMalloc call may

use mmap() to create a large allocation arena in memory for

later calls to cudaMalloc. While this is helpful for the CUDA

library’s memory management algorithm, it is not desirable to

save the entire arena — especially, when cudaMallocs actually

uses only a small portion of the allocation arena.

To counter this, CRAC does its own internal bookkeeping.

Rather than saving a large allocation arena that makes the

checkpoint size larger unnecessarily, CRAC only saves the

memory associated with active mallocs. Active mallocs are

those allocations that were allocated but not freed at the time

of checkpoint. Draining and refilling device (GPU) memory at

active mallocs is essential to make the device state consistent

between checkpoint and restart. Note that saving the memory

associated with the active mallocs is different from logging

the sequence of all cudaMallocs and all cudaFrees. While only

the memory associated with active mallocs is saved, we still

need to replay the original sequence to get the same host and

device addresses as prior to checkpoint (explained in the next

section).

4) Implementation: restoring the CUDA library-allocated

regions: An important implementation issue for CRAC is to

restore all of CUDA’s memory allocations at their original

address during restart. CUDA has three primary allocation

routines: cudaMalloc (on the device), cudaMallocHost/cuda-

HostAlloc (on the host), and cudaMallocManaged (for UVM:

unified memory on device and host). CRAC logs all CUDA

calls that allocate and free memory.

In the case of cudaHostAlloc, it suffices to keep track of

only the active memory buffers (the buffers that have not been

freed at the time of checkpoint). At restart time, CRAC only

needs to replay cudaHostMalloc for active memory buffers, in

order to again register these buffers with the CUDA library.

Note that the memory buffers are already present in the

restored upper half memory.

In the cases of cudaMallocHost (on the host), cudaMalloc

(on the device) and cudaManagedMalloc (for unified memory),

CRAC replays all associated allocations and frees at restart

time. The memory associated with these regions is saved

at checkpoint time and copied back at restart time. In our

experiments on real-world applications, we observed many

calls to cudaMalloc and cudaManagedMalloc, but few calls

to free those buffers.

CRAC replays the entire log in order to guarantee that active

memory allocations are restored at the original address. CRAC

relies on determinism of the CUDA library allocation. CRAC

also disables address space randomization using Linux’s

personality system call. And CRAC’s determinism also

relies on using the same CUDA/GPU platform on restart.

In the future, three possible solutions can be implemented

to optimize this: virtualization of library-allocated addresses;

patching applications locations containing the addresses; or a

future enhancement by NVIDIA offering a MAP FIXED flag

analogous to the flag of the mmap call.

5) Implementation: Handling CUDA’s internal registration

of fat binaries:: At the time of launching a CUDA application,

CRAC must arrange for the CUDA library in the lower half

to register the CUDA kernels residing in the upper half as the

active CUDA library loads before the upper half. This requires

that CRAC call the lower level CUDA functions in the lower-

half CUDA library: __cudaRegisterFatBinary,

__cudaRegister<CUDA-element>, and

__cudaUnregisterFatBinary (during cleanup at

process exit). Here, CUDA elements are device variable,

functions, texture, surface, and etc. Finally, during restart,

CRAC must re-register the application kernels, since this is

a fresh copy of the lower half. This may require additional

patching of fat-binary-handle at restart time. This added

burden never occurs in the case of MANA for MPI: As

before, MANA for MPI benefits from the MPI standard,

which defines an almost complete isolation of the MPI library

from the MPI application.

IV. EXPERIMENTAL RESULTS

This section present the comprehensive analysis of the

CRAC’s performance for real-world applications. The aim of

this section is to demonstrate that CRAC has low runtime

overhead and scales well on real-world applications.

A. Hardware

The experiments presented in this section are performed

on the PSG cluster of NVIDIA. Each node runs CentOS 7.7

release (kernel version 3.10.0), with 4 NVIDIA Tesla V100

(compute capability 7.0), each with 32 GB of RAM. Each

Haswell node is running two 16-core Intel Xeon E5-2698 v3

(2.30 GHz) processors with a total of 256 GB of RAM.

A local, NVIDIA Quadro K600 node with 1 GB of RAM

was used only in Section IV-D6. This section includes a

special set of experiments to analyze any runtime improvement

using the FSGSBASE patch to the Linux kernel [25]. The

FSGSBASE patch is under active review for inclusion in the

mainline Linux kernel [26], [27]. A custom Linux kernel

version 5.0.6 was built from the official Ubuntu git repository1

on Ubuntu 18.04.3 LTS (Bionic Beaver).

B. Software

Each GPU runs NVIDIA CUDA version 10.0 with driver

440.33.01. We use NVCC to compile the application and use

gcc/g++ version 7.3.0 for the linking with libc version 2.17.

We use MPICH version 3.3.2 for the MPI-based applications.

The experiments use CRAC, a DMTCP plugin [21], de-

veloped to specifically checkpoint and restart CUDA appli-

cations using the novel split-process and user-space program

loading mechanism (Section III-A0b). DMTCP [2] is an open-

source tool for transparent checkpoint-restart for distributed

and multi-threaded applications. We use DMTCP version 3.0

[18] (master branch).

C. Terminology

We define the following terminology and formulas that will

be used for the rest of the paper.

(a) Runtime overhead: we use the standard formula to calcu-

late the runtime overhead where ECRAC is the execution

time of an application under CRAC and E
CRAC

is the

native execution time (not under CRAC).

Runtime Overhead % =
ECRAC − E

CRAC

E
CRAC

× 100 (1)

(b) CUDA calls-per-second (CPS): CUDA API calls are cal-

culated by NVIDIA’s profiler nvprof. We are interested

only in the number of calls from upper half to lower half,

for the sake of analyzing their overhead. A simple script

extracted just those calls from the upper half (i.e., to the

lower-half CUDA runtime library), and not the calls to the

CUDA device library (made directly from the lower-half

CUDA runtime library). There are three additional CUDA

calls that the upper half can make: cudaLaunchKernel

(reported by nvprof), along with two undocumented in-

ternal APIs, __cudaPushCallConfiguration and

__cudaPopCallConfiguration. The CUDA com-

piler generates all three calls for one CUDA kernel launch.

So, the formula for total CUDA calls is as follows:

Total CUDA calls = 3× count(cudaLaunchKernel)+

count(rest of CUDA runtime API)

1git://kernel.ubuntu.com/ubuntu/ubuntu-disco.git

The CUDA “calls per second” (CPS) is defined as:

CPS =
Total CUDA calls

E
CRAC

(2)

D. Application benchmarks

CRAC is analyzed using six CUDA applications. Four of

them are standard benchmark suites or real-world applications,

and the rest are taken from the official NVIDIA CUDA

reference code suite2. These applications are chosen to cover

a wide range of CUDA features, including Unified Virtual

Memory (UVM) and CUDA Streams.

Application UVM Streams CPS # streams

Rodinia ✗ ✗ 38K–132K —
Lulesh ✗ ✓ 2.5K 2–32
simpleStreams ✗ ✓ 10K 4–128
UnifiedMemory ✓ ✓ 4.4K 4–128

Streams

HPGMG-FV ✓ ✗ 35K —
HYPRE ✓ ✓ 0.6K 1–10
GROMACS ✗ ✓ 6K–58K 2

TABLE I: Application benchmarks characterization

Table I characterizes the applications used here. The table

includes four columns: UVM and Streams are checked if the

application uses the respective CUDA feature. The CUDA

calls per second (CPS) are calculated using equation 2. Lastly,

for applications using CUDA streams, the range of the number

of CUDA streams used by the application is shown.

The Rodinia benchmark suite [28] provides a wide range

of applications with a varying CPS. Also, two stream-

oriented codes from the NVIDIA CUDA toolkit are used:

simpleStreams and UnifiedMemoryStreams [29]. The two ap-

plications are chosen because: they exclusively demonstrate

the streams feature; and they can be configured easily to use

the maximum number of streams on a given GPU (128 streams

in our case).

To evaluate CRAC’s performance on real-world applica-

tions, we use three benchmarks from the DOE (Department

Of Energy): LULESH: Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics version 2 [30]; HYPRE:

Scalable Linear Solvers and Multigrid Methods library ver-

sion 2.13.0 [31]; and HPGMG: High-Performance Geometric

MultiGrid (using the Github repository’s master branch [32]).

We also include a very widely used real-world application:

GROMACS [33] (using two variants of the ADH cubic bench-

mark [34] for the Alcohol Dehydrogenase protein).

1) Rodinia Benchmark Suite: Rodinia [35], [36] is a com-

monly used benchmark suite for CUDA. Version 3.1 covers

a diverse range of 23 CUDA applications using basic CUDA

features, and compatible with all CUDA versions starting from

CUDA version 2.x.

We use 14 of the applications from the Rodinia benchmark

suite for this work. The other 9 applications were omitted

either because they were too short (completing within one

second), or because they are similar to benchmarks already

2https://docs.nvidia.com/cuda/cuda-samples/index.html

included in terms of the total number of CUDA API calls, or

because the total number of CUDA API calls was too few.

Rodinia’s applications can be scaled by adjusting the input.

We use the command line arguments given in Table II for the

respective Rodinia benchmark applications.

Application Command-line argument(s)

BFS graph1MW 6.txt
CFD fvcorr.domn.193K
DWT2D rgb.bmp -d 1024x1024 -f -5 -l 100000
Gaussian -s 8192 -q
Heartwall test.avi 104
Hotspot temp 512 power 512 output.out
Hotspot3D 512 8 1000 power 512x8 temp 512x8 output.out
Kmeans kdd cup -l 1000
LUD -s 2048 -v
Leukocyte testfile.avi 500
Myocyte 500 1 0
NW 40960 10
Particlefinder -x 128 -y 128 -z 10 -np 100000
SRAD 2048 2048 0 127 0 127 0.5 1000
Streamcluster 10 20 256 65536 65536 1000 none output.txt 1
LULESH -s 150

TABLE II: Command-line arguments for Rodinia benchmarks

B
F
S

C
F
D

D
W

T
2

D

G
a
u
s
s
ia

n

H
e
a
rt

w
a
ll

H
o
ts

p
o
t

H
o
ts

p
o
t3

D

K
m

e
a
n
s

L
U

D

L
e
u
k
o
c
y
te

N
W

P
a
rt

ic
le

fi
lt

e
r

S
R

A
D

S
tr

e
a
m

c
lu

s
te

r

Rodinia Benchmarks (Nvidia V100)

0

10

20

30

40

50

60

70

80

ru
n
ti

m
e
 (

s
)

 (
w

it
h
 #

 C
U

D
A

 A
P
I
c
a
ll
s
)

1
0

0

7
2

K

8
0

0
K

1
8

K

1
7

0
0

7
K

3
K

3
0

K

1
K

1
2

K

1
5

K

1
2

0

8
K 6

9
K

native

CRAC

Fig. 2: Runtimes of 14 Rodinia benchmarks with total CUDA

API calls made by each benchmark (rounded off)

a) Runtime overhead: Figure 2 shows the runtimes of

Rodinia benchmarks without CRAC (native) and with CRAC.

We ran 10 iterations of each benchmark and calculated the

mean for the each runtime. In almost every case, the 10 iter-

ations had a standard deviation of approximately 0.1 seconds.

The figure also shows that 9 out of 14 benchmarks namely,

BFS, DWT2D, Heartwall, Hotspot, LUD, Leukocyte, Parti-

B
F
S

C
F
D

D
W

T
2

D

G
a
u
s
s
ia

n

H
e
a
rt

w
a
ll

H
o
ts

p
o
t

H
o
ts

p
o
t3

D

K
m

e
a
n
s

L
e
u
k
o
c
y
te

L
U

D

P
a
rt

ic
le

fi
lt

e
r

S
R

A
D

S
tr

e
a
m

c
lu

s
te

r

Rodinia Benchmarks (Nvidia V100)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
C

h
e
c
k
p
o
in

t
a
n
d
 R

e
s
ta

rt
 t

im
e
 (

s
)

 (
w

it
h
 c

k
p
t

s
iz

e
)

3
9

M
B

3
9

M
B

4
0

M
B

7
8

3
M

B

1
6

M
B

1
8

M
B

5
4

M
B

3
7

4
M

B

6
9

5
M

B

5
7

M
B

3
6

M
B

5
3

M
B

8
3

M
B

Checkpoint

Restart

Fig. 3: Checkpoint and restart times of 14 Rodinia benchmarks

with checkpoint image sizes

clefilter, SRAD, and Streamcluster, ran in less than 7 seconds.

With these benchmarks, the runtime overhead varies between

1% and 14%. The 11% runtime overhead of DWT2D is

explained by the abnormal 133,000 CUDA calls per sec-

ond. There are two common reasons for a higher overhead:

first, with short-running applications DMTCP’s startup time

becomes significant (2.5 second runtime of BFS with 14%

overhead, and 1.4 second runtime of Heartwall with 11% over-

head); and second, with short-running tasks, the small standard

deviation of 0.1 seconds becomes significant compared to the

running time, and statistically leads to a higher overhead.

On the other hand, the remaining Rodinia benchmarks run

for more than 10 seconds, and we observe there a 0–2%

overhead. Interestingly, Hotspot3D, and Kmeans even have a

negative overhead. We suspect that this is a result of caching.

Finally, CFD and Gaussian have less than 1% overhead, while

LUD and NW have less than 2% overhead.

b) Checkpoint overhead: For checkpoint and restart, we

disabled DMTCP’s default gzip compression and triggered

checkpoint at random times during an entire run of an applica-

tion. Figure 3 shows that the checkpoint-restart time is fairly

small for CRAC and completes within one second for almost

all cases. Checkpoint time is usually smaller than restart time,

but there are two outliers (Streamcluster and Heartwall) for

which restart takes more time than the checkpoint time. Further

investigation showed that these two benchmarks specifically

do many CUDA mallocs and CUDA frees. We log CUDA

mallocs and frees to make the CUDA library’s state consistent,

and later replay those APIs on restart. We log the API when a

user application calls the CUDA APIs that need to be logged.

So, at checkpoint time, no extra work is needed, but at restart,

those allocation and free calls were replayed. Note that even

then the restart time is still less than 1 second.

2) Stream-oriented benchmarks:

a) simpleStreams: SimpleStreams is one of the two code

samples we took from NVIDIA’s official CUDA code samples.

We quote from the code’s documentation that simpleStream

illustrates the usage of CUDA streams for overlapping kernel

execution with device/host memcpy (memory copy). The ker-

nel is used to initialize an array to a specific value, after which

the array is copied to the host (CPU) memory. To increase

performance, multiple kernel/memcopy pairs are launched

asynchronously, with each pair in its own stream. Kernels are

serialized. Thus, if n pairs are launched, a streamed approach

can reduce the memcopy cost to (1/n)th of a single copy of

the entire data set.

b) Configuration and runtime overhead: We re-

configured the number of streams from 4 (default) to 128.

For a NVIDIA V100 GPU with its compute capability

of 7.0, 128 is the maximum concurrent kernel limit [37]. The

application fails if the stream count is increased beyond the

max limit. nreps is the number of times each experiment

is repeated. For better accuracy, we changed it from its

default value of 10 to 1000. niterations is the number of

iterations for the loop inside the kernel. We have varied this

niterations variable with values 5, 10, 100, and 500. We

use the default Blocking Sync Event synchronization method.

The benchmark reports the time to execute one CUDA kernel

with streams and without streams (i.e., non-streamed).

Figure 4a shows how the overall runtime of simpleStreams

varies with the number of iteration increments. CRAC still

maintains less than 1% overhead in each case. Figure 4b

(plot on the right) shows the impact of CUDA streams. As

niterations increases (see previous paragraph) the time

to run the CUDA kernel increases. Figure 4b shows that the

streamed version becomes significantly faster, compared to

the non-streamed version, as niterations increases. Yet

CRAC continues to perform with low overhead even for the

faster streamed version. For the same reasons, CUDA streams

is widely used over regular non-streamed kernel launches.

Note that CRAC incurs no overhead; neither in non-streamed

CUDA kernel execution time nor in the one with streams.

This shows that even after increasing the concurrency level to

the max (128 streams), CRAC handles it well as compared

to previous solutions. Figure 5a shows the runtime with

the same configuration (128 streams, 1000 repetitions, and

500 iterations).

c) UnifiedMemoryStreams(UMS): UnifiedMemory-

Streams (UMS) is taken from NVIDIA’s code samples

and illustrates the usage of streams with Unified Memory.

UnifiedMemoryStreams implements a simple task consumer

using threads and streams with all data in Unified Memory,

and tasks consumed by both host and device. The application

randomizes task sizes for a total of 40 tasks with 4 streams.

Based on the task size, the application decides at run time

5 10 100 500

simpleStreams: # iterations within the CUDA kernel
 (1000 streamed + 1000 non-streamed kernels)

0

10

20

30

40

50

to
ta

l
ru

n
ti

m
e
 (

s
)

native (total runtime)

CRAC (total runtime)

(a) Runtimes of simpleStreams without and with CRAC
while increasing the iterations within the CUDA kernel

5 10 100 500

simpleStreams: # iterations within the CUDA kernel

0

5

10

15

20

25

ti
m

e
 t

o
 e

x
e
c
u
te

 t
h
e
 C

U
D

A
 k

e
rn

e
l
o
n
c
e
 (

m
s
)

native (non-streamed)

CRAC (non-streamed)

native (128 streams)

CRAC (128 streams)

(b) Time for one CUDA kernel execution time without
and with streams in simpleStreams. (More iterations
imply a longer-running kernel.)

Fig. 4: Experiments with simpleStreams from the NVIDIA CUDA code sample

whether the task should be run on the host or the device. Note

that both the device and host are using same unified memory.

Configuration and runtime overhead: We configured the

application to use 128 streams with a total of 1280 tasks.

Since we needed to run the experiments 10 times for the

average runtime, we set the seed to a random number 12701

to get consistent task allocations. We measured the execution

time by elapsed wall-clock time. Figure 5a shows the average

runtime without and with CRAC. We observed an overhead

of 1.5%.

d) LULESH: Version 2.0 GPU model of LULESH is

specifically implemented for NVIDIA’s GPUs. LULESH is

a scientific real-world application developed by Lawrence

Livermore National Laboratory [30] that solves the Shock

Hydronomics Challenge Problem. LULESH provides two op-

tions, one with an unstructured grid and the other with a

structured grid. In our case, we use a structured grid with 150

edge elements, which makes the problem size 150×150×150,

and which uses nearly 2 GB of memory.

Runtime overhead: LULESH calls 210K CUDA calls in

80 seconds of its execution time that means around 2.5K

CUDA calls per second. We saw that with maximum streams

in simpleStreams and UnifiedMemoryStreams, CRAC still in-

curs low-overhead. With the real-world application that makes

65K cudaLaunchKernel calls. Figure 5a shows that LULESH’s

performance is still the same with CRAC, with an overhead

slightly less than 2%.

e) Checkpoint overhead: Figure 5c shows that the check-

point overhead is very low as compared to the overall runtime

of each stream-oriented application. CRAC needs to recreate

streams and make the CUDA library’s state consistent. So,

the time is slightly more than the checkpoint time. However,

both checkpoint and restart finish within one second in each

stream-oriented application.

3) Real-world applications (HPGMG-FV, HYPRE, and

GROMACS): HPGMG is a high-performance geometric

multigrid application. It is one of the benchmarks used for

ranking speeds of the top supercomputers [38]. We use

HPGMG-FV (Finite Volume) for our experiments. HPGMG-

FV can be scaled further with MPI over multiple nodes.

However, it suffices for our purposes to run HPGMG-FV over

a single MPI rank. This already provides a real-world scale

since this configuration of HPGMG-FV results in 2 million

CUDA calls per minute (35,000 CUDA calls per second). This

scale is already representative of real-world high-performance

applications.

HYPRE is a linear system solver library that makes only

600 CUDA calls per second. However, HYPRE creates large

UVM regions, and employs long-running kernels. One MPI-

rank can create UVM regions of up to 1 GB, and the host

and the device both work simultaneously on UVM regions

via CUDA streams and textures. Therefore, HYPRE incurs a

higher memory footprint than HPGMG-FV.

GROMACS (GROningen MAchine for Chemical Simula-

tion) is widely used molecular dynamics simulation package. It

is primarily designed for biochemical molecules like proteins,

lipids and nucleic acids. A test benchmark (ADH cubic) for

one such protein, Alcohol Dehydrogenase is provided by

the GROMACS developers [34]. The ADH cubic benchmark

contains two use cases — namely RF (Reaction-Field) and

PME (Particle Mesh Ewald). GROMACS has been run with

one MPI rank and 32 OpenMP threads.

The following table shows the command-line arguments

needed to run these four real-world applications.

SS UMS LULESH
(SS=simpleStreams)

(UMS=UnifiedMemoryStreams)
Streams-oriented Benchmarks

0

10

20

30

40

50

60

70

80

ru
n
ti

m
e
 (

s
)

516K

26K

210K
native

CRAC

(a)

HPGMG-FV HYPRE ADH-RF ADH-PME
(ADH=GROMACS ADH_cubic)

Real-world Benchmarks

0

200

400

600

800

1000

ru
n
ti

m
e
 (

s
)

6M

25K

5.4M

62M
native

CRAC

(b)

SS
U
M
S

LU
LE

SH

H
PG

M
G

H
YP

RE

AD
H
-R

F

AD
H
-P

M
E

Benchmarks

0

1

2

3

4

5

6

7

8

C
h
e
c
k
p
o
in

t
a
n
d
 R

e
s
ta

rt
 t

im
e
 (

s
)

 (
w

it
h
 c

k
p
t

s
iz

e
)

1
4

2
M

B

4
2

1
M

B

1
1

7
M

B

1
1

2
M

B 2
.3

G
B

1
6

.3
G

B 1
8

.5
G

BCheckpoint

Restart

(c)

Fig. 5: (a) Runtimes of stream-oriented benchmarks; (b) Runtimes of real-world benchmarks; and (c) Checkpoint and Restart

times using CRAC. The numbers above the bars in parts (a) and (b) report the total number of CUDA calls. The numbers

above the bars in part (c) report the checkpoint image size. Note that GROMACS ADH cubic PME exhibits as many as 58,000

CUDA calls per second from upper to lower half. Even under this very high stress, CRAC’s runtime overhead remains small.

Application Command-line arguments

HPGMG-FV 7 8
HYPRE ij -solver 1 -rlx 18 -ns 2 -CF 0 -hmis

-interptype 6 -Pmx 4 -keepT 1 -tol
1.e-8 -agg nl 1 -n 250 250 250 250

GROMACS ADH_cubic-rf -nb gpu -nsteps 600000 -s rf.tpr
GROMACS ADH_cubic-pme -nb gpu -nsteps 600000 -s pme.tpr

Runtime overhead: Figure 5b shows native and CRAC

runtimes for HPGMG-FV and HYPRE, and for two variants

of GROMACS. The times in Figure 5b for HPGMG-FV and

HYPRE are averaged using 10 native runs and 10 runs with

CRAC. The two variants of GROMACS have been run with

600,000 steps instead of the default 10,000 steps, in order

to avoid some high statistical variances seen with the deault

option. The GROMACS runs are averaged over 3 native runs

and 3 runs with CRAC, and each individual time is within

about 1% of the overall average. CRAC manages a runtime

overhead of about 2% for HPGMG and 3% for HYPRE. For

GROMACS, the runtime overhead was less than 3% for ADH

cubic-RF and less than 1% for ADH cubic-PME.

Checkpoint overhead: Figure 5c shows that with HPGMG,

CRAC needs to replay many CUDA calls in relation to its

checkpoint size. Therefore, CRAC takes nearly 1.75 seconds

to restart HPGMG. In contrast, HYPRE’s checkpoint size

is 2.3GB, but it takes less time to restart. Thus, while the

runtime overhead and time to checkpoint are low, the time

to restart can be longer, depending on how many CUDA

calls CRAC needs to replay to restore the state of the new

CUDA library. We observe that even though the PME case of

GROMACS incurs 58,000 CUDA calls per second, the restart

time is still relatively short. So, we conclude that the restart

time of the GROMACS variants are dominated by restoring

the image by DMTCP.

4) Split processes for cuBLAS: By placing the NVIDIA

cuBLAS library in the lower half, the support for BLAS [39]

(Basic Linear Algebra Subprograms) further reduces the run-

time overhead. This works by reducing the number of calls

from upper to lower half. (See column 4 of Table III.)

We ran three types of programs: cublasSdot (inner prod-

uct), cublasSgemv (matrix-vector product), and cublasSgemm

(matrix-matrix product). The dimension was chosen so that the

matrix (or vector, for cublasSdot) had data size 1 MB, 10 MB,

or 100 MB. A timing loop of 10,000 calls to the cuBLAS

routine was used for accuracy, and times are reported for just

a single iteration. When processing larger data (matrices and

vectors of size 100 MB), CRAC (column 4) shows a runtime

overhead varying from 0.5% to -0.8%. (The negative overhead

is presumed due to cache locality.)

CUDA Call Data Native CRAC(ms) CMA/IPC(ms)
size (ms) (% overhead) (% overhead)

cublasSdot 1MB 0.026 0.027 (3.9) 0.21 (698)
cublasSdot 10MB 0.049 0.050 (3.3) 2.56 (5142)
cublasSdot 100MB 0.282 0.284 (0.5) 50.4 (17766)
cublasSgemv 1MB 0.012 0.012 (1.9) 0.082(577)
cublasSgemv 10MB 0.036 0.037 (0.7) 1.25 (3329)
cublasSgemv 100MB 0.142 0.142(-0.1) 25.5 (17812)
cublasSgemm 1MB 0.202 0.207 (2.4) 0.49 (142)
cublasSgemm 10MB 1.806 1.816 (0.6) 9.03 (400)
cublasSgemm 100MB 32.373 32.107 (-0.8) 100.34 (209)

TABLE III: Comparison of native both: (a) to CRAC with

cuBLAS in lower half; and (b) to use of CMA/IPC to simulate

the approaches of CRCUDA and CRUM

5) Comparison of CRAC to earlier proxy-based ap-

proaches: The cost of IPC: As described at the beginning of

Section III-A, the starting point for CRAC was the observation

that the existing proxy-based checkpointing approaches (e.g.,

CRCUDA and CRUM) rely on expensive inter-process com-

munication (IPC) between CUDA application and the proxy.

The authors of CRUM measured the runtime overhead on real-

B
F
S

C
F
D

D
W

T
2

D

G
a
u
s
s
ia

n

H
e
a
rt

W
a
ll

H
o
ts

p
o
t

H
o
ts

p
o
t3

D

K
m

e
a
n
s

L
U

D

L
e
u
k
o
c
y
te

N
W

P
a
rt

ic
le

fi
lt

e
r

S
R

A
D

S
tr

e
a
m

c
lu

s
te

r
Rodinia Benchmarks (Nvidia K600)

0

10

20

30

40

50

60

70

80
ru

n
ti

m
e
 (

s
)

native (unpatched Linux)

CRAC (unpatched Linux)

native (FSGSBASE patch)

CRAC (FSGSBASE patch)

0

2

4

6

p
e
rc

e
n
t

Runtime overhead of CRAC w/o and with FSGSBASE patch

CRAC overhead (unpatched)

CRAC overhead (FSGSBASE)

B
F
S
*

C
F
D

D
W

T
2

D
*

G
a
u
s
s
ia

n

H
e
a
rt

W
a
ll

H
o
ts

p
o
t

H
o
ts

p
o
t3

D

K
m

e
a
n
s

L
U

D

L
e
u
k
o
c
y
te

N
W

P
a
rt

ic
le

fi
lt

e
r

S
R

A
D

S
tr

e
a
m

c
lu

s
te

r

Rodinia Benchmarks (Nvidia K600)

-2

0

2

p
e
rc

e
n
t

Change in runtime overhead with FSGSBASE patch

Fig. 6: (left) Runtimes of Rodinia benchmarks without and with CRAC on both unpatched and patched (FSGSBASE) Linux;

(right, top) Runtime overhead of CRAC on both unpatched and patched (FSGSBASE) Linux;

(right, bottom) and percentage difference observed with CRAC’s runtime overhead with patched Linux as compared

to unpatched Linux (lower is better).

world benchmarks at from 6% to 12%.

Here we present a synthetic IPC benchmark (CMA/IPC:

column 5 in Table III) to simulate the proxy-based approach

of CRCUDA and CRUM. CMA is Cross-Memory Attach (i.e.,

the Linux syscalls process vm readv and process vm readv).

We assume that cuBLAS is in the proxy process, to reduce

the IPC communication. CMA is used to copy the application

to a proxy process (which executes the cuBLAS routine), and

the result is copied back to the application.

The overhead using CMA [40] (Cross Memory Attach) for

IPC varies from 142% to 17,812%. The overhead is huge, as

expected. As an example, one iteration of cublasSdot for 1 MB

data runs natively in 0.026 ms. This implies 1/(0.026 ms) =

38,000 calls per second. So, CMA must be invoked 76,000

times per second for the round trip of the cublasSdot call.

6) Runtime overhead improvement using Linux’s up-

coming FSGSBASE patch: A small experiment was also

performed to see if there was significant benefit to using the

upcoming FSGSBASE patch to the Linux kernel [25]. In the

current Linux, switching to a new thread (or to the lower-

half program in our case) requires a kernel call to set the

corresponding x86-64 “fs” register for that thread. A kernel

call may require a millisecond. If done frequently, this can

be expensive. At least in the case of MPI applications, it was

previously observed in [23] that the expense of the kernel calls

was significant when calling lower-half routines.

Hence, we wished to see if CRAC’s already small runtime

overhead could be further reduced by using the FSGSBASE

patch to directly set the “fs” register, instead of setting “fs”

through kernel calls. As we shall see, the added advantage of

the FSGSBASE patch is small, and often nearly zero.

We next analyze whether the FSGSBASE patch can further

reduce CRAC’s runtime overhead. CRAC needs to get and set

the “fs” register when it makes a call from the upper half to

the lower half. (This is analogous to the use of the “fs” register

in context switches among threads in Linux.) Setting the “fs”

register is expensive due to the kernel call.

The experiments of Figure 6 were run on a local node:

an older NVIDIA Quadro K600 GPU. It was not possible

to install a patched Linux kernel on the public, production

nodes used for the experiments in the other figures. This also

explains why the same Rodinia benchmarks mostly ran for at

least 10 seconds in this experiment.

Figure 6 presents two columns of graphs. On the left,

the original 14 Rodinia benchmarks are plotted. Each bench-

mark shows the native runtime and the CRAC runtimes,

both with and without the FSGSBASE patch. The runtimes

with FSGSBASE were taken using the FSGSBASE/v9 kernel

patches [25].

The two graphs on the right in Figure 6 present the same

data, but they express the data as percentage differences, to

more clearly contrast two cases: the runtime overhead of

CRAC (with and without FSGSBASE); and the change in

runtime overhead of CRAC when using the FSGSBASE patch.

Lower is better in both cases.

V. RELATED WORK

Much of the work targeting transparent checkpointing of

CUDA was already covered in Section II, as part of the

motivation for a fresh approach in CRAC. See Section II for

more details.
To summarize, several techniques [10]–[14] were explored

prior to CUDA 4.0 (in 2011 and earlier). Unified memory

between device and host was later introduced to CUDA in two

increments: Unified Virtual Addressing (UVA) in CUDA 4.0;

and Unified Virtual Memory (UVM [41]) in CUDA 6.0. This

made CUDA incompatible with the previous techniques.
Since then, two newer checkpointing approaches appeared:

CRCUDA [15] and CRUM [23]. The limitations of these two

approaches were already described: high runtime overhead,

incomplete UVM support, and untested scaling of concurrent

streams. (See the second page of Section I for details.)
It remains to describe four techniques from the literature

that are related to the implementation of CRAC: proxies in

CRUM; proxies in the wider literature; split processes; and

process-in-process.
a) Use of proxy processes in CRUM: The previous work

of CRUM in checkpointing CUDA has an unacceptably high

overhead of 6% or more. This occurs at two extremes.

Case I: Many short-lived kernels. This incurred overhead

because of the need to frequently marshal and un-

marshal the parameters for communication between

the application and the proxy process when invoking

CudaLaunchKernel. For example, HPGMG-FV has

a high frequency of CUDA calls.

Case II: Kernel and host access many UVM memory

pages frequently. This requiring frequent calls to

mprotect and userfault fd (a recent Linux utility

serving the same purpose as segfault handlers). This

interacted particularly badly with NVIDIA UVM.

b) Proxy processes: Proxy processes are a well-known

concept that is widely used in systems. In an early example,

Zandy et al. [42] demonstrated the use of a “shadow” process

for checkpointing currently running application processes that

were not originally linked with a checkpointing library. This

allows the application process to continue to access its kernel

resources, such as open files, via RPC calls with the shadow

process. Kharbutli et al. [43] use a proxy process for isolation

of heap accesses by a process and for containment of attacks to

the heap. CheCL [44] has employed proxy processes already in

2010, for the closely related OpenCL language [45] for GPUs.

CRCUDA [15] and CRUM also employ proxy processes.
c) Split processes: Split processes are described in Fig-

ure 1 in Section III-A0b. MPI for MANA [23] adopted split

processes in the context of checkpoint-restart for MPI. Upon

checkpoint, only the upper half memory is saved. On restart,

a small bootstrap program in the lower half restores the upper

half memory, and the upper half then replays any persistent

state associated with a physical device. In the case of MANA,

that physical device would be the network, and/or sockets

communicating with a central MPI coordinator. In the case

of the current work (CRAC), the physical device is the GPU.
There are several antecedents to the idea of combining two

programs in a single process. Here we note McKernel and

shadow device drivers, both devised for the Linux kernel.

McKernel [46] runs a “lightweight” kernel along with a

full-fledged Linux kernel. The HPC application runs on the

lightweight kernel, which implements time-critical system

calls. The rest of the functionality is offloaded to a proxy

process running on the Linux kernel. The proxy process is

mapped in the address space of the main application, similar

to MANA’s concept of a lower half, to minimize the overhead

of “call forwarding” (argument marshalling/un-marshalling).

Swift et al. [47] developed the idea of a “shadow device

driver”. The lower half corresponds to the actual device driver,

and the upper half corresponds to a shadow device driver that

mirrors (or “logs”) all transactions to the lower half. If the

lower-half device driver crashes, then it is re-initialized and a

long-and-replay approach is used to re-initialize it.

d) Process-in-process: an approach related to split pro-

cesses: Process-in-process [24] is related to split process in

that that both approaches load multiple programs into a single

address space. However, the goal of process-in-process was

intra-node communication optimization, and not checkpoint-

restart. Given two MPI ranks (processes) co-located on a single

computer node, the two ranks were loaded into a single address

space, to make copying of messages between the two MPI

ranks more efficient.

Unlike split processes, process-in-process loads all MPI

ranks co-located on the same node as separate threads within

a single process, but in different logical “namespaces”, in the

sense of the dlmopen namespaces in Linux.

VI. CONCLUSION AND FUTURE WORK

Transparent checkpointing of CUDA with low runtime over-

head has been demonstrated. This is important, since: earlier

approaches (prior to CUDA 4.0) are incompatible with the ver-

sions of CUDA-4.0 and later; and two later approaches [15],

[23] suffer from high runtime overhead, incomplete UVM

support, and untested scaling of concurrent streams. The new

CRAC approach using split processes demonstrates low run-

time overhead (about 1%), and support for the aforementioned

CUDA features.

CRAC’s runtime overhead of 1% is dominated by the cost of

calls from the upper half to the lower half. This can be further

minimized by placing intermediate-level libraries in the lower

half. As an example, cuBLAS (column 4 of Table III) shows

close to zero runtime overhead when processing matrices or

vectors of size 100 MB. Further, a proof of principle was

demonstrated for checkpointing of hybrid MPI+CUDA on

a single node. In future work, this proof of principle for

transparent checkpointing of MPI+CUDA will be extended

to full support for MPI on multiple nodes, using ideas from

MANA [23].

ACKNOWLEDGMENT

We thank Michael Sullivan of NVIDIA for a careful reading

and comments, and also for the use of computer resources

at NVIDIA. We also thank Rohan Garg for conversations

describing his earlier design of CRUM for CUDA.

REFERENCES

[1] TOP500, “TOP500 supercomputer sites,” https://www.top500.org/, Nov.
2019.

[2] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in Proceedings of

the International Symposium on Parallel and Distributed Processing

(IPDPS). IEEE, 2009, pp. 1–12.

[3] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux clusters,” Journal of Physics: Conference Series,
vol. 46, no. 1, p. 494, 2006.

[4] CRIU team, “CRIU,” accessed Dec., 2019, http://criu.org/.

[5] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware checkpointing
and migration on Amazon cloud spot instances,” IEEE Transactions on

Services Computing, vol. 5, no. 4, pp. 512–524, 2011.

[6] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-
scale study of soft-errors on GPUs in the field,” in 2016 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 519–530.

[7] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in ASPLOS. New York, NY, USA:
ACM, 2015, pp. 297–310. [Online]. Available: http://doi.acm.org/10.
1145/2694344.2694348

[8] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell,
“Reliability lessons learned from GPU experience with the Titan
supercomputer at Oak Ridge Leadership Computing Facility,” in SC.
New York, NY, USA: ACM, 2015, pp. 38:1–38:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807666

[9] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Under-
standing GPU errors on large-scale HPC systems and the implications
for system design and operation,” in HPCA. IEEE, 2015, pp. 331–342.

[10] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU-accelerated high perfor-
mance computing in virtual machines,” in Proceedings of the Inter-

national Symposium on Parallel and Distributed Processing (IPDPS).
IEEE, 2009, pp. 1–11.

[11] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,
and P. Ranganathan, “GViM: GPU-accelerated virtual machines,” in
Proc. of the 3rd ACM Workshop on System-level Virtualization for High

Performance Computing. ACM, 2009, pp. 17–24.

[12] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “CheCUDA:
A checkpoint/restart tool for CUDA applications,” in Proceedings of

the International Symposium on Parallel and Distributed Processing

(IPDPS). IEEE, 2009, pp. 408–413.

[13] L. B. Gomez, A. Nukada, N. Maruyama, F. Cappello, and
S. Matsuoka, “Transparent low-overhead checkpoint for GPU-
accelerated clusters,” 2010. [Online]. Available: https://wiki.ncsa.illinois.
edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf

[14] A. Nukada, H. Takizawa, and S. Matsuoka, “NVCR: A transparent
checkpoint-restart library for NVIDIA CUDA,” in Proceedings of the

International Symposium on Parallel and Distributed Processing Work-

shops and PhD Forum. IEEE, 2011, pp. 104–113.

[15] T. Suzuki, A. Nukada, and S. Matsuoka, “Transparent checkpoint
and restart technology for CUDA applications,” in GPU Technology

Conference (GTC’16), 2016. [Online]. Available: https://on-demand.
gputechconf.com/gtc/2016/presentation/s6429-akira-nukada-transparen-
checkpoint-restart-technology-cuda-applications.pdf

[16] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “CRUM:
Checkpoint-restart support for CUDA’s unified memory,” in IEEE Int.

Conf. on Cluster Computing (CLUSTER’18). IEEE Press, 2018, pp.
302–313.

[17] T. Suzuki, A. Nukada, and S. Matsuoka, “CRCUDA source,” 2015.
[Online]. Available: https://github.com/tbrand/CRCUDA

[18] DMTCP, “dmtcp/dmtcp,” Mar 2020. [Online]. Available: https://github.
com/dmtcp/dmtcp.git

[19] T. C. Schroeder, “Peer-to-peer & Unified Virtual Addressing,” NVIDIA
webinar, 2011. [Online]. Available: https://developer.download.nvidia.
com/CUDA/training/cuda webinars GPUDirect uva.pdf

[20] M. Harris, “Unified memory in CUDA 6,” NVIDIA Blog, 2013.
[Online]. Available: https://devblogs.nvidia.com/parallelforall/unified-
memory-in-cuda-6/

[21] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using process-
level virtualization,” in Proceedings of International Conference on

Cluster Computing (CLUSTER). IEEE, 2016, pp. 402–412.

[22] J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni,
J. Vienne, and G. Cooperman, “System-level scalable checkpoint-restart
for petascale computing,” in 22nd IEEE Int. Conf. on Parallel and

Distributed Systems (ICPADS’16). IEEE Press, 2016, pp. 932–941,
also, technical report available as: arXiv preprint arXiv:1607.07995.

[23] R. Garg, G. Price, and G. Cooperman, “MANA for MPI: MPI-agnostic
network-agnostic transparent checkpointing,” in Proc. of the 28th

Int. Symp. on High-Performance Parallel and Distributed Computing.
ACM, 2019, pp. 49–60.

[24] A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa,
“Process-in-process: Techniques for practical address-space sharing,” in
Proceedings of the 27th International Symposium on High-Performance

Parallel and Distributed Computing, 2018, pp. 131–143.

[25] C. S. Bae, “[PATCH v9 00/17] Enable FSGSBASE instructions,” Oct.
4, 2019, https://lkml.org/lkml/2019/10/4/725.

[26] J. Corbet, “A possible end to the FSGSBASE saga,” June 1, 2020.
[Online]. Available: https://lwn.net/Articles/821723/

[27] S. Levin, “[PATCH v13 00/16] Enable FSGSBASE instructions,” May
28, 2020, https://lkml.org/lkml/2020/5/28/1358.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization

(IISWC’09). IEEE, 2009, pp. 44–54.

[29] “CUDA samples.” [Online]. Available: https://docs.nvidia.com/cuda/
cuda-samples/index.html

[30] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-
641973, August 2013.

[31] Lawrence Livermore National Laboratory (LLNL), “HYPRE: Scalable
linear solvers and multigrid methods,” 2017. [Online]. Avail-
able: https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-
multigrid-methods

[32] Lawrence Berkeley National Laboratory (LBL), “HPGMG: High-
Performance Geometric Multigrid,” 2017. [Online]. Available: https://
bitbucket.org/nsakharnykh/hpgmg-cuda

[33] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark,
and H. J. Berendsen, “GROMACS: Fast, flexible, and free,” Journal

of Computational Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005.

[34] Gromacs team, “Gromacs benchmarks,” Aug 2015. [Online]. Available:
http://ftp.gromacs.org/pub/benchmarks/

[35] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the International Symposium on Workload Character-

ization, 2009, pp. 44–54.

[36] “Rodinia: Accelerating compute-intensive applications with accelera-
tors.” [Online]. Available: http://rodinia.cs.virginia.edu/doku.php

[37] “CUDA C programming guide.” [Online]. Available: https://
docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-
and-technical-specifications technical-specifications-per-compute-
capability

[38] HPGMG team, “High-Performance Geometric multigrid, an HPC
benchmark and supercomputing ranking metric,” 2016. [Online].
Available: https://hpgmg.org

[39] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (BLAS),” ACM

Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[40] J. Vienne, “Benefits of cross memory attach for MPI libraries on HPC
clusters,” in Proceedings of the 2014 Annual Conference on Extreme

Science and Engineering Discovery Environment, 2014, pp. 1–6.

[41] N. Sakharnykh, “Unified memory on Pascal and Volta,”
GPU Technology Conference (GTC), 2017. [Online]. Avail-
able: http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-
nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf

[42] V. C. Zandy, B. P. Miller, and M. Livny, “Process Hijacking,” in Pro-

ceedings of the International Symposium on High-Performance Parallel

and Distributed Computing (HPDC). IEEE, 1999, pp. 177–184.

https://www.top500.org/
http://criu.org/
http://doi.acm.org/10.1145/2694344.2694348
http://doi.acm.org/10.1145/2694344.2694348
http://doi.acm.org/10.1145/2807591.2807666
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf
https://wiki.ncsa.illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf
https://on-demand.gputechconf.com/gtc/2016/presentation/s6429-akira-nukada-transparen-checkpoint-restart-technology-cuda-applications.pdf
https://on-demand.gputechconf.com/gtc/2016/presentation/s6429-akira-nukada-transparen-checkpoint-restart-technology-cuda-applications.pdf
https://on-demand.gputechconf.com/gtc/2016/presentation/s6429-akira-nukada-transparen-checkpoint-restart-technology-cuda-applications.pdf
https://github.com/tbrand/CRCUDA
https://github.com/dmtcp/dmtcp.git
https://github.com/dmtcp/dmtcp.git
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://lkml.org/lkml/2019/10/4/725
https://lwn.net/Articles/821723/
https://lkml.org/lkml/2020/5/28/1358
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://bitbucket.org/nsakharnykh/hpgmg-cuda
http://ftp.gromacs.org/pub/benchmarks/
http://rodinia.cs.virginia.edu/doku.php
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability
https://hpgmg.org
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf

[43] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and M. Prvulovic,
“Comprehensively and Efficiently Protecting the Heap,” ACM Sigplan

Notices, vol. 41, no. 11, pp. 207–218, 2006.
[44] H. Takizawa, K. Koyama, K. Sato, K. Komatsu, and H. Kobayashi,

“CheCL: Transparent checkpointing and process migration of OpenCL
applications,” in Proceedings of the International Symposium on Parallel

and Distributed Processing (IPDPS). IEEE, 2011, pp. 864–876.
[45] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming

standard for heterogeneous computing systems,” Computing in Science

and Engineering, vol. 12, no. 3, pp. 66–73, 2010.

[46] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the scalability, performance isolation and device driver
transparency of the IHK/McKernel hybrid lightweight kernel,” in 2016

IEEE International Parallel and Distributed Processing Symposium

(IPDPS). IEEE, 2016, pp. 1041–1050.
[47] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recov-

ering device drivers,” ACM Transactions on Computer Systems (TOCS),
vol. 24, no. 4, pp. 333–360, 2006.

	Introduction
	Background
	The Historical Evolution of CUDA
	A First Attempt at Checkpoint-restart: CheCUDA prior to CUDA 4.0
	A Second Attempt at Checkpoint-restart: Proxy-based solutions for CUDA 4.0 and later

	The Design and Implementation of CRAC
	The Design of CRAC
	Implementation Issues
	Implementation: Issue of library-allocated memory
	Implementation: Issue of memory overlapping
	Implementation: Saving the ``library-allocated'' arena
	Implementation: restoring the CUDA library-allocated regions
	Implementation: Handling CUDA's internal registration of fat binaries:

	Experimental Results
	Hardware
	Software
	Terminology
	Application benchmarks
	Rodinia Benchmark Suite
	Stream-oriented benchmarks
	Real-world applications (HPGMG-FV, HYPRE, and GROMACS)
	Split processes for cuBLAS
	Comparison of CRAC to earlier proxy-based approaches: The cost of IPC
	Runtime overhead improvement using Linux's upcoming FSGSBASE patch

	Related Work
	Conclusion and Future Work
	References

