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   In acute ischemic stroke the early and accurate prediction of tissue outcome is important to decisions 
regarding therapy. One proposed prediction approach is to combine structural, perfusion, and diffusion 
MRI in a generalized linear model (GLM) to predict voxel outcome. Such a model, however, does not 
account for the spatial correlation likely to be present in voxels that result in infarction. A simple spatial 
correlation model extension of GLM is presented in this paper; showing moderate improvement in the 
prediction accuracy.

1. Introduction 
Stroke is a leading health problem in the United States.  

With approximately 600,000 new or recurrent cases of 
stroke each year, it is the third leading cause of death and 
the principal cause of long-term disability (1).  Strokes 
can be ischemic or hemorrhagic; approximately 85% of 
all strokes are ischemic (1).  Clinically, it is important to 
render an accurate prediction of the location and extent of 
the stroke as early after onset of stroke symptoms as 
possible, since such prognoses impact the therapeutic 
regimen (2).  The purpose of this paper is to discuss the 
development of a new technique which appears to 
increase the accuracy with which ischemic stroke tissue 
outcome, on a voxel-by-voxel basis, can be predicted. 

Stroke imaging is conventionally performed with either 
computed tomography (CT) or magnetic resonance (MR) 
imaging.  MR in particular offers both soft tissue contrast 
and functional imaging capability (3).  By measuring the 
reduction in the amount of free molecular movement of 
water molecules as cells undergo cytotoxic edema, MR 
diffusion has been shown to be a sensitive indicator of 
stroke (4-6).  Similarly, MR perfusion imaging utilizes a 
contrast agent to permit the visualization and computation 
of the rate with which the contrast agent flows into a 
region, and such perfusion measurements have also been 
shown to offer insights into the progression of ischemic 
stroke (7,8).  In this paper we focus on MR imaging 

using a combination of anatomical, perfusion, diffusion 
imaging. 

Several techniques have been explored for combining 
different types of MR data, including ISODATA 
clustering, thresholding, and generalized linear model 
(GLM) (9-11). GLM provides a mapping from the feature 
space to an outcome-probability space, where the 
probabilities indicate the likelihood of each voxel 
becoming infarcted.  However, the GLM (and other 
models that have been examined), assumes independence 
among the feature vectors – an assumption that can likely 
be improved since the final infarcted regions are generally 
contiguous regions instead of isolated voxels.  
Physiologically, it seems plausible that if a voxel is to 
become infarcted due to lack of oxygenation, then its 
neighboring voxel is also likely to suffer the same fate.  
As such, we sought to identify and implement an 
alternative linear model in which spatial correlations can 
be readily modeled.  To that end, we’ve implemented a 
spatial autoregressive model (SAR) from the field of 
economics; SAR models appear to both provide the 
desired qualities and produce improved results over GLM 
(13,14). Although alternative models (e.g., Markov 
random field) can be used to incorporate spatial 
correlations, SAR is attractive because it is a 
generalization of GLM, making it feasible to assess the 
incremental value of spatial correlation. 
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2. Theory 
Wu et al (12) developed a supervised-learning model 

(generalized linear model, or GLM) which outputs a 



    

continuous value (ranging from 0 to 1) representing the 
risk of future infarction for each tissue voxel.  The 
prediction is performed on six channels of MR images 
scanned within 12 hours of symptom onset.  The six 
channels are: (i) T2-weighted anatomical images; (ii) 
diffusion-weighted images (DWI); (iii) apparent diffusion 
coefficient of water (ADC); (iv) relative cerebral blood 
volume (CBV); (v) relative cerebral blood flow (CBF), 
and (vi) mean transit time (MTT).   

The probability of tissue infarction for voxel i can be 
represented by the logistic function 

 
 

 
where Yi is a linear function of different MR channel 

values at voxel i: 

 
The coefficients α, β1, …, β6 are variables to be 

estimated, and εi denotes the error term.  Let n denote the 
total number of voxels, k the number of parameters (here k 
= 6), this equation can be represented by 

εβα ++= XY , where X is a n×k matrix containing 
the input values of the k MR channels for each of n voxels; 
Y is a vector of size n, β is a vector of k coefficients, α is a 
constant representing the bias or intercept term, and ε 
denotes a vector of size n representing the random effect 
of the observations.  The error terms ε are typically 
assumed to have a normal distribution with a mean of 0.   

A supervised approach, logistic regression, is used to 
estimate β and α.  Training is performed by utilizing each 
subject’s follow-up MR studies, in which the regions of 
final infarction have fully stabilized.  Using these 
follow-up studies, a neuroradiologist first identifies 
regions of infarction; a binary image denoting the 
infarcted region is created and used as the target 
classification during supervised learning. 
Spatial Autoregression Model (SAR) 

In contrast to GLM where every voxel is treated 
independently, a simple spatial correlation model was 
used to assess the importance of such correlation models.    
More specifically, the SAR model extends the GLM by 
incorporating a recursive correlation term: 

ερβα +++= WYXY , where W is a n×n matrix 
representing the correlational structure, ρ is a coefficient 
representing the magnitude of the correlational effect (14).  
The W matrix is user defined where Wi,j is equal to 1 if i,j 
are neighbors, and 0 otherwise, while the coefficient ρ is 
estimated algorithmically.  By convention, the W matrix 
is normalized such that the sum of each row equals 1.  

The term ρWY represents the spatial correlation.  It can 
be seen that WY is a vector of size n, and the ith element of 
WY is the sum of the outcome values of the neighbors of 
the voxel i.  The coefficient ρ expresses the extent to 
which the sum of the neighboring outcomes contributes to 
the outcome at the target voxel. 

Note that SAR is a recursive model.  The vector of 
outcome Y in the term ρWY on the right-hand side is 
identical to the vector of outcome Y on the left-hand side 
of the model’s equation.  As a result, SAR is able to 
model a spatial correlation that propagates over many 
voxels, while using a simple adjacency matrix W that 
specifies only immediate neighbors. 
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3. Methods 
Data analysis was performed retrospectively using MR 

images acquired from 74 patients.  Patient demographics 
and stroke etiology are summarized in Table I.  The data 
used consist of, for each patient (see Figure 1): (i)six 
channels of MR data acquired within 12 hours of 
symptom onset; the six channels are: T2, ADC, DWI, 
CBV, CBF, MTT; (ii) diffusion lesion (DWI lesion) and 
perfusion lesion (PWI lesion) determined from the above 
6 MR channels by neuroradiologists blinded to the 
predictive results; (iii) a binary map of actual outcome 
determined from follow-up MRI by neuroradiologists 
blinded to the predictive results.  A voxel is marked as 1 
if it is infarcted on the follow-up exam, and 0 otherwise. 
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Prior to invoking the GLM model, the data is 
pre-processed through normalization, re-sampling, and 
extraction of training regions.  For normalization, each 
channel of data is normalized by dividing by the average 
value of that MR channel over the normal region.  The 
normal region is chosen to be the mirror mapping of the 
PWI lesion on the contralateral hemisphere of the same 
patient.  All images in the dataset were re-sampled using 
bicubic splines to a consistent in-plane resolution of 
1.56×1.56 mm.  Lastly, the union of the PWI/DWI 
lesions is chosen as the training and testing regions.   

4. Results 
Both GLM and SAR models were evaluated on the 

74-patient dataset described previously.  A jacknifing 
approach – where the test result for each patient was 
obtained by using data from all other patients as training 
data – was used. To evaluate the prediction accuracy of 
each algorithm, we used two standard metrics: the area 
under the ROC (receiver operating characteristic) curve 
(AUC), and the maximum correct classification rate.  
The ROC curve for each subject is generated by plotting 
the true-positive ratio (sensitivity) against the 
false-positive ratio (1-specificity).  The AUC is 



    

calculated for each subject using numerical integration.  
The correct classification rate is defined as the sum of the 
true positive rate and the true negative rate, where the 
true-positive and true-negative voxels are computed by 
applying a threshold on the predicted risk map.  The 
maximum correct classification rate is computed using the 
optimal threshold which maximizes the correct 
classification.  

Figure 2 shows the prediction results for the slice 
shown in Figure 1. Shown across the top of Figure 2 are 
predicted outcomes (by GLM and SAR, respectively) and 
true outcome.  As is evident in the Figure, the GLM 
yielded a predicted map that is somewhat “speckled” in 
nature, whereas the SAR model yielded an image that 
shows greater regional continuity.  

The performances of GLM and SAR across all 74 cases 
are summarized in Table II.  Regardless of the metric 
used, the SAR model provided moderate but statistically 
significant improvements over GLM in aggregate over all 
cases.  Specifically, using the Student’s t-test, the 
performance of SAR and GLM were found to be different 
at a statistical significance of p ≤ 0.001.  Individually, 
GLM outperformed SAR in four cases (5.4%); SAR 
outperformed GLM in 61 cases (82.4%), and SAR and 
GLM had comparable performance (i.e., a difference in 
performance of less than 1%) in 9 cases (12.2%).  

5. Discussion and Conclusions 
Stroke tissue outcome is an important clinical research 

problem. Previous methods of tissue outcome prediction 
have relied upon the use of models which assume 
voxel-to-voxel independence.  In this paper we have 
utilized the spatial autoregression model to demonstrate 
that moderate improvements in outcome prediction can be 
achieved by explicitly incorporating spatial correlations.  
We have concluded that spatial correlations may be an 
important factor in analyzing and predicting ischemic 
stroke outcome, and that spatial autoregressive models 
may be an effective way of capturing that spatial 
dependency. 

SAR is certainly not the only way of capturing spatial 
correlations – Markov random field models may be 
adopted, for example.  Spatial correlations can also be 
incorporated at the data level – for example in the 
estimation of the perfusion parameters.  Lastly, we have 
in this study neglected the spatial relationship between 
axial slices due to the poor inter-slice resolution and gap.  
With suitable 3-D data, spatial correlations may yield 
greater performance improvement. 

One interesting question left open by our study is what 
is the best achievable performance of stroke prediction, 
without the use of meta-level knowledge (e.g., (16)).  We 

obtained moderate performance gains on a dataset of 74 
highly heterogeneous samples with respect to age, stroke 
etiology, imaging time, image acquisition site, etc.  We 
are of the opinion that stroke prediction algorithms can 
perform to a greater level of accuracy if the sample is 
large enough to permit patient stratification into more 
homogeneous groups, and the weighting coefficients are 
estimated separately on the basis of each group.  This 
heterogeneity may also be part of the reason why SAR 
worked better in most but not all cases.   

Lastly, as with any data analysis method, it is important 
to reflect upon the assumptions being made by the model.  
In the case of SAR, we have focused on the hypothesis 
that accounting for spatial correlations would improve the 
performance of GLM.  It is worthwhile questioning, 
however, whether a linear model is inherently the correct 
model for stroke outcome prediction. 
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Table I.  Distribution of Patients 
Category Number
Total number of studies 74 
     Male subjects 46 
     Female subjects 28 
     Age < 40 4 
     40 ≤ Age < 50 5 
     50 ≤ Age < 60 8 
     60 ≤ Age < 70 15 
     70 ≤ Age < 80 32 
     Age ≥ 80 10 
Stroke subtype  
     Large artery atherosclerosis 21 
     Cardioembolism 31 
     Undetermined etiology 16 
     Other etiology 6 
Time of MRI after stroke onset  
     T < 3 h 8 
     3 h ≤ T < 6 h 27 
     6 h ≤ T < 9 h 29 
     9 h ≤ T ≤ 12 h 10 

 

Table II.  Prediction results from 74-patient group. 
 GLM SAR 
AUC (area under the ROC curve) 75% 79%
Max correct classification 81% 83%

 
 

 

Figure 1.  Inputs into the classifier: T2, ADC 
(apparent diffusion coefficient), DWI (diffusion 
weighted imaging), CBF (cerebral blood flow), CBV 
(cerebral blood volume), MTT (mean transit time) 
images. The DWI lesion, PWI lesion, and Final 
outcome region, are manually delineated and used 
by the classifier. 

 
Figure 2.  Prediction example of the GLM model 
and the SAR model.  Shown are the risk maps 
(color overlays thresholded at p=0.3) as predicted 
by GLM and SAR, for a single patient, along with 
their respective ROC curves.  The final outcome 
image is also shown. 


	NextPage238: - 238 -
	ProcTitle238: Pan-Pacific Imaging Conference '08
	CopyRight238: © 2008 The Imaging Society of Japan
	PaperNo238: Tr.2-202
	ReturnFirst238: Return to Program
	NextPage239: - 239 -
	ProcTitle239: Pan-Pacific Imaging Conference '08
	CopyRight239: © 2008 The Imaging Society of Japan
	NextPage240: - 240 -
	ProcTitle240: Pan-Pacific Imaging Conference '08
	CopyRight240: © 2008 The Imaging Society of Japan
	NextPage241: - 241 -
	ProcTitle241: Pan-Pacific Imaging Conference '08
	CopyRight241: © 2008 The Imaging Society of Japan
	ReturnEnd241: Return to Program


