
Parallel Disk-Based Computation for Large, Monolithic
Binary Decision Diagrams

Daniel Kunkle∗ Vlad Slavici Gene Cooperman∗

Northeastern University
360 Huntington Ave.

Boston, Massachusetts 02115
{kunkle,vslav,gene}@ccs.neu.edu

ABSTRACT
Binary Decision Diagrams (BDDs) are widely used in for-
mal verification. They are also widely known for consum-
ing large amounts of memory. For larger problems, a BDD
computation will often start thrashing due to lack of mem-
ory within minutes. This work uses the parallel disks of a
cluster or a SAN (storage area network) as an extension of
RAM, in order to efficiently compute with BDDs that are or-
ders of magnitude larger than what is available on a typical
computer. The use of parallel disks overcomes the band-
width problem of single disk methods, since the bandwidth
of 50 disks is similar to the bandwidth of a single RAM sub-
system. In order to overcome the latency issues of disk, the
Roomy library is used for the sake of its latency-tolerant
data structures. A breadth-first algorithm is implemented.
A further advantage of the algorithm is that RAM usage
can be very modest, since its largest use is as buffers for
open files. The success of the method is demonstrated by
solving the 16-queens problem, and by solving a more un-
usual problem — counting the number of tie games in a
three-dimensional 4×4×4 tic-tac-toe board.

Categories and Subject Descriptors: I.1.2 [Symbolic

and Algebraic Manipulation]: Algorithms — Algebraic
algorithms, Analysis of algorithms; E.1 [Data Structures]:
Distributed data structures

General Terms: Algorithms, Experimentation, Performance

Keywords: parallel, disk-based, binary decision diagram,
BDD, breadth-first algorithm

1. INTRODUCTION
There are three widespread symbolic techniques for formal

verification currently in use: binary decision diagrams, SAT
solvers, and explicit state model checking. Binary decision
diagrams (BDDs) have a particular attraction in being able
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to compactly represent a Boolean function on k Boolean
variables. Because BDDs are a representation of the general
solution, they are an example of symbolic model checking
— in contrast with SAT-solving and explicit state model
checking, which find only particular solutions.

BDDs have found widespread use in industry — especially
for circuit verification. Unfortunately, as with many formal
verification methods, it tends to quickly run out of space. It
is common for a BDD package to consume the full memory
of RAM in a matter of minutes to hours.

To counter this problem of storage, a novel approach is
demonstrated that uses parallel disks. While we are aware
of approaches using the local disks of one computer and of
approaches using the RAM of multiple computers or CPUs,
we are not aware of work simultaneously using the parallel
disks of many computers. The parallel disks may be the
local disks of a cluster, or the disks of a SAN in a cluster.

The parallelism is not for the sake of speeding up the com-
putation. It is only to support the added storage of parallel
disks. Because aggregate disk bandwidth is the bottleneck
of this algorithm, more disks produce a faster computation.
Nevertheless, the goal of the algorithm is to extend the avail-
able storage — not to provide a parallel speedup beyond the
traditional sequential computation in RAM.

The new package is demonstrated by building large QB-
DDs (quasi-reduced BDDs) for two combinatorial problems.
The first is the well-known N-queens problem, and is used
for comparability with other research. The second combina-
torial problem may be new in the literature. The number of
tie boards are counted on a 3-dimensional tic-tac-toe board
of dimensions 4× 4× 4.

The question of comparability of this new work with pre-
vious work is a subtle one. Previously, researchers have used
the disks of a single node in an effort to extend the available
storage of a sequential BDD package [2, 21, 24, 25]. Re-
searchers have also developed parallel BDD algorithms with
the goal of making BDD computations run faster [11, 15,
19, 22, 28, 29]. All of the work cited was performed in the
1990s, with little progress since then. One exception is that
in 2001, Minato and Ishihara [16] demonstrated a stream-
ing BDD mechanism that incorporates pipelined parallelism.
That work stores its large result on a single disk at the end
of the pipeline, but it does not use parallel disks.

Given that there has been little progress in disk-based and
in parallel BDDs in the last ten years, there is a question of
how to produce a fair scalability comparison that takes into
account the advances in hardware over that time. While the
last ten years have seen only a limited growth in CPU speed,



they have seen a much greater growth in the size of RAM.
We use the N-queens problem to validate the scalability

of our new algorithm. We do this in two ways. Recall that
the N-queens problem asks for the number of solutions in
placing N non-attacking queens on an N ×N chess board.

In the first validation, we compare with a traditional se-
quential implementation on a computer with large RAM.
The BuDDy package [8] was able to solve the N-queens prob-
lem for 14 queens or less, when given 8 GB of RAM. When
given 56 GB of RAM, BuDDy was still not able to go be-
yond 14 queens. In comparison, the new program was able
to solve the 16-queens problem. One measure of the size
of the computation is that the size of the canonical BDD
produced for 16 queens was 30.5 times larger than that for
14 queens. The number of solutions with 16 queens was 40.5
times the number of solutions with 14 queens.

A second validation of the scalability is a comparison with
the more recent work of Minato and Ishihara [16]. That
work used disk in 2001 to store a BDD solution to the
N-queens problem. Like BuDDy, that work was also only
able to solve the 14-queens problem. Nevertheless, it rep-
resented the state of the art for using BDDs to solve the
N-queens problem at that time. It reported solving the 14-
queens problem in 73,000 seconds with one PC and in 2,500
seconds with 100 PCs. The work of this paper solves the
16-queens problem using 64 computers in 100,000 seconds.
The ROBDD for 16 queens is 30 times larger than that for
14 queens. The bandwidth of disk access has not grown by
that factor of 30 over those 9 years.

To our knowledge, the BDD package presented here is the
first demonstration of the practicality of a breadth-first par-
allel disk-based computation. Broadly, parallel-disk based
computation uses disks as the main working memory of a
computation, instead of RAM. The goal is to solve space-
limited problems without significantly increasing hardware
costs or radically altering existing algorithms and data struc-
tures. BDD computations make an excellent test of parallel-
disk based computation because larger examples can exhaust
several gigabytes of memory in just minutes (see experimen-
tal results in Section 5).

There are two fundamental challenges in using disk-based
storage as main memory:

Bandwidth: roughly, the bandwidth of a single disk
is 50 times less than that of a single RAM subsystem
(100 MB/s versus 5 GB/s). Our solution is to use
many disks in parallel, achieving an aggregate band-
width comparable to RAM.

Latency: worse than bandwidth, the latency of disk
is many orders of magnitude worse than RAM. Our so-
lution is to avoid latency penalties by using streaming
data access, instead of costly random access.

Further, as an optimization, we employ a hybrid approach:
using serial, RAM-based methods for relatively small BDDs;
transitioning to parallel disk-based methods for large BDDs.

Briefly, the main points of novelty of our approach are:

• This is the first package to efficiently use both par-
allel CPUs and parallel disks. More disks make the
computation run faster. The package also allows com-
putations for monolithic BDDs larger than ever be-
fore (the alternative approach is partitioning the very
large BDD into smaller BDDs). There are advantages

to using one monolithic BDD rather than many sub-
BDDs: the duplicate work is reduced, thus reducing
computation time in some cases; sometimes, partition-
ing a BDD requires domain-specific knowledge, while
our approach does not. There are, however, good par-
titioning methods for which no domain-specific knowl-
edge is necessary. In any case, our approach can be
combined with BDD partitioning, to solve very very
large problems.

• By using Roomy [12], the high-level algorithms are sep-
arated from the low-level memory management, garbage
collection and load balancing. Most existing BDD
packages have at least some of these three compo-
nents integrated in the package, while our BDD pack-
age deals only with the“application”level, thus making
it very flexible.

• As opposed to most other packages for manipulating
very large BDDs, we do not require that a level in a
BDD fit entirely in the aggregate RAM of a cluster.
The RAM is used primarily to hold buffers for open
files. While the number of open files can potentially
grow in some circumstances, a technique analogous to
the use of two levels in external sorting can be em-
ployed to again reduce the need for RAM, at a modest
slowdown in performance (less than a factor of two).

Related work is described in Section 1.1. An overview
of binary decision diagrams is presented in Section 2. A
brief overview of the Roomy library is given in Section 3.
Section 4 presents the parallel algorithms that are the foun-
dation of this work. Section 5 presents experimental results.
This is followed by a discussion of future work in Section 6.

1.1 Related Work
Prior work relevant to the proposed BDD package comes

from two lines of research: sequential breadth-first BDD al-
gorithms and parallel RAM-based BDD algorithms. The
two approaches often overlap, resulting is parallel RAM-
based breadth-first algorithms. However, there are no prior
successful attempts at creating a parallel disk-based package
in the literature.

Algorithms and representations for large BDDs stored in
secondary memory have been the subject of research since
the early 1990s. Ochi et al. [21] describe efficient algorithms
for BDDs too large to fit in main memory on the commod-
ity architectures available at that time. The algorithms are
based on breadth-first search, thus avoiding random pointer
chasing on disk. Shared Quasi-Reduced BDDs (SQBDDs)
are used to minimize lookups at random locations on disk.
These algorithms are inherently sequential, requiring the use
of a local “operation-result-table”. Random lookups to this
local table avoid the creation of duplicate nodes.

Ashar and Cheong [2] build upon the ideas of [21] and im-
prove the performance of BDD operations based on breadth-
first search by removing the need for SQBDDs and using the
most compact representation, the Reduced Ordered BDD
(ROBDD). Duplicate avoidance is performed by lookups to
local queues, which make the algorithm hard to parallelize.

A High Performance BDD Package which exploits the
memory hierarchy is presented in [24]. The package builds
upon the findings in [2], making the algorithms more general
and more efficient. Even though [24] introduces concepts as



“superscalarity” and “pipelining” for BDD algorithms, the
presented package is still an inherently sequential one, rely-
ing on associative lookups to request queues.

Ranjan et al. [22] propose a BDD package based on breadth-
first algorithms for a network of workstations, making pos-
sible the use of distributed memory for large BDD com-
putations. However, their algorithms are sequential – the
computation is carried out one workstation at a time, thus
only taking advantage of the large amount of space that
a network of workstations offers, without parallelizing the
processing of data. Their approach is infeasible for efficient
parallelization.

Stornetta and Brewer [28] propose a parallel BDD pack-
age for distributed fast-memory (RAM) based on depth-first
algorithms, while providing a mechanism for efficient load
balancing. However, their algorithms incur a large com-
munication overhead. Any approach based on depth-first
search would be infeasible for a parallel disk-based package,
because the access pattern has a high degree of randomness.
Milvang-Jensen and Hu [15] provide a BDD package build-
ing upon ideas in [22]. As opposed to [22], the package pro-
posed in [15] is parallel – the workstations in a network all
actively process data at the same time. However, since each
workstation deals only with a sequence of consecutive levels,
the workload can become very unbalanced, which would be
unacceptable for a parallel disk-based BDD algorithm.

In 1997, Yang and O’Hallaron [29] propose a method for
parallel construction of BDDs for shared memory multi-
processors and distributed shared memory (DSM) systems
based on their technique named partial breadth-first expan-
sion, having as starting point the depth-first/breadth-first
hybrid approach in [1]. Their algorithms rely on very fre-
quent synchronization of global data structures and on ex-
clusive access to critical sections of the code which make
this approach infeasible for any distributed-memory system.
Also in 1997, Bianchi et al. [3] propose a MIMD approach to
parallel BDDs. Their approach exhibits very good load bal-
ancing, but the communication becomes a bottleneck, mak-
ing it infeasible to be adapted for parallel disks, because it
does not delay and batch requests.

Other methods for manipulating very large BDDs are par-
titioning the BDD by means of partitioning the Boolean
space using window functions [18] or by determining good
splitting variables [6].

The newest result mentioned so far in this section is from
2001. Although there is substantial BDD-related work after
2001, little of it is concerned with providing fundamentally
different ways of parallelizing BDD algorithms. Most use
existing ideas and improve upon them or optimize the imple-
mentations. Most BDD-related research in the past decade
was oriented towards better and faster algorithms for reach-
ability analysis [9, 10, 23], compacting the representation of
BDDs [27] or variable ordering [7, 17, 20].

There are many other methods for improving the efficiency
of BDD processing. One such method, described by Mao and
Wu [14], applies Wu’s method to symbolic model checking.

2. BACKGROUND: BINARY DECISION DI-
AGRAMS

The conceptual idea behind Binary Decision Diagrams is
quite simple. One wishes to represent an arbitrary Boolean
function from k Boolean variables to a Boolean result. For

example, “and”, “or”, and “xor” are three functions, each of
which is a Boolean function on two Boolean variables. In
the following description, the reader may wish to refer to
Figure 1 for an example.

An ordered binary decision diagram (OBDD) fixes an or-
dering of the k Boolean variables, and then represents a
binary decision tree with respect to that ordering. The tree
has k +1 levels, with each of the first k levels corresponding
to the next Boolean variable in the ordering. For each node
at level i, the Boolean values of x1, . . . , xi−1 are known, and
the child along the left branch of a tree represents those
same Boolean values, along with xi being set to 0 or false.
Similarly, the descendant of a node at level i along the right
branch of a tree corresponds to setting xi to 1 or true. For a
node at level k + 1, the Boolean values of x1, . . . , xk at that
node are all determined by the unique path from the root
of the tree to the given node. Next, a node at level k + 1 is
set either to false or to true, according to the result of the
Boolean function being represented.

For example, the“and” function on two variables will have
three levels: one root node at the first level, two nodes at the
second level, and four leaf nodes at the third level. Three of
the leaf nodes are set to false and one is set to true.

A reduced ordered binary decision diagram (ROBDD) is
a lattice representing the same information as an OBDD,
but with maximal sharing of nodes. More precisely, one can
progressively convert an OBDD into an ROBDD as follows.
First, identify all “true” nodes of the OBDD with a sin-
gle “true” node of the ROBDD, and similarly for the “false”
nodes. Thus, there are exactly two nodes at level k + 1 in
the ROBDD. One says that the nodes at level k + 1 have
been reduced.

Next, one iterates moving bottom up. Assume that all
nodes at levels i + 1, i + 2, . . . , k of the OBDD have been
reduced. Two nodes at level i are reduced, or identified with
each other, if they have the same left child node and the same
right child node. After all possible reductions at level i are
completed, one continues to level i− 1, and so on.

The structure described so far is in fact a quasi-reduced
BDD (QBDD), which has no redundant nodes, and a child
of a node can be either a node at the next level or a ter-
minal. A fully reduced BDD (ROBDD) has one additional
optimization: nodes that have identical left and right chil-
dren (sometimes called forwarding nodes) are removed. So,
children can be from any lower level.

Often, one refers to an ROBDD as simply a BDD for short.
The advantage of a BDD is a compact representation. For
example, the parity Boolean function is the Boolean function
that returns true if an even number of the k input variables
are true, and it returns false otherwise. A BDD representing
the parity function will have exactly two distinct nodes for
each level below level 1. Intuitively, one of the two nodes
at level i can be thought of as indicating that the variables
x1, . . . , xi−1 have even parity, and the other node represents
odd parity. Following the branch that sets xi to true will
lead from a node at level i to a node of the opposite parity
at level i + 1. Following the branch that sets xi to false will
lead to a node of the same parity at level i + 1.

Finally, to take the logical “and” of two BDDs, one con-
structs a new BDD in top-down fashion using the Shannon
expansion. If one wishes to form the “and” of two nodes at
the same level (one from the first BDD and one from the
second BDD), the result will be a new node whose left child



will be the “and” of the two original left children, and the
right child will be the “and” of the two original right chil-
dren. Thus, to construct the “and” of two nodes requires
that one recursively construct the “and” of the left children
along with the “and” of the right children. The recursion
stops when reaching the leaf nodes. The combinatorial ex-
plosion is reduced (but not necessarily eliminated) by using
an implementation related to dynamic programming [4].

Logical “or” and “xor” of BDDs are implemented similarly
to logical “and”. The generic algorithm for combining two
BDDs is often called apply in the literature. Logical “not”
of a BDD consists of exchanging the values of the two leaf
nodes, “true” and “false”.

The QBDD is preferred over the ROBDD due to its more
natural specification of node levels. In a QBDD, the level
of a node is the number of edges that have to be traversed
on any path from the root to the node. Note that the level
definition is consistent for any non-terminal node – any path
from the root to a node in a QBDD has the same length.
We use the convention that the root of a BDD is at level 0.
Level i corresponds to variable index i.

Figure 1 shows a comparison between OBDD, QBDD and
ROBDD representations of the same Boolean formula.

3. A BRIEF OVERVIEW OF ROOMY
This section gives a brief overview of the parts of Roomy

that are pertinent to the BDD algorithms in Section 4. Com-
plete documentation and source code for Roomy can be
found online [12]. Also published in the same proceedings as
this paper is a tutorial on Roomy [13], which describes the
Roomy programming model and gives example programs.

We chose to use Roomy for our implementation because
it removes the need for the programmer to deal with various
correctness and performance issues that arise when writing
parallel disk-based applications.

3.1 Goals and Design of Roomy
Roomy is implemented as an open-source library for C/C++

that provides programmers with a small number of simple
data structures (arrays, unordered lists, and hash tables)
and associated operations. Roomy data structures are trans-
parently distributed across many disks, and the operations
on these data structures are transparently parallelized across
the many compute nodes of a cluster. All aspects of the
parallelism and remote I/O are hidden within the Roomy
library.

The primary goals of Roomy are:

1. to provide the most general programming model pos-
sible that still biases the application programmer to-
ward high performance for the underlying parallel disk-
based computation.

2. the use of full parallelism; providing not only the use
of parallel disks (e.g., as in RAID), but also parallel
processing.

3. to allow for a wide range of architectures, for exam-
ple: a single shared-memory machine with one or more
disks; a cluster of machines with locally attached disks;
or a compute cluster with storage area network (SAN).

The overall design of Roomy has four layers: foundation;
programming interface; algorithm library; and applications.

Foundation
file management

remote I/O

external sorting

synchronization and barriers

Programming Interface
RoomyArray

RoomyList

RoomyHashTable

Basic Algorithms
breadth-first search

parallel depth-first search

dynamic programming

delayed and

immediate

operations

Applications
binary decision diagrams

explicit state model checking

SAT solver

Figure 2: The layered design of Roomy.

Figure 2 shows the relationship between each of these layers,
along with examples of the components contained within
each layer.

3.2 Roomy-hashtable
Because the Roomy-hashtable is the primary data struc-

ture used in the parallel disk-based BDD algorithms in Sec-
tion 4, it is used to illustrate the various operations provided
by the Roomy data structures. Operations for the Roomy-
array and Roomy-list are similar in nature.

A Roomy-hashtable is a variable sized container which
maintains a mapping between user-defined keys and values.
Those elements can be built in data types (such as inte-
gers), or user defined structures of arbitrary size. A Roomy-
hashtable can be of any size, up to the limits of available disk
space, and will grow as needed as elements are inserted.

Each Roomy-hashtable is stored as a number of RAM-
sized subtables, distributed across the disks of a cluster (or
the disks of a SAN). Delayed operations are buffered to disk
and co-located with the subtable they reference. Once many
delayed operations are collected, each subtable can be pro-
cessed independently to complete the delayed operations,
avoiding costly random access patterns.

Below are the operations provided by a Roomy-hashtable,
categorized by whether they are delayed or immediate.

Roomy-hashtable delayed operations..

insert: insert a given key/value pair, replacing any
existing pair with the same key

access: apply a user defined function to the key/value
pair with the given key, if it exists

remove: remove the key/value pair with the given key,
if it exists

Roomy-hashtable immediate operations..

size: return the number of key/value pairs stored in
the hashtable
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Figure 1: OBDD, QBDD and ROBDD representations for Boolean formula (x0∨¬x1∨x2∨x4∨x5)∧ (¬x0∨x3∨x1∨x4∨x5).
Solid lines represent the high (true) branch, dashed lines the low (false) branch. The OBDD is the least compact representation.
Combining identical nodes (for variables x4 and x5 in this case) will create a QBDD. The QBDD can be further reduced to
an ROBDD by removing a node if it has identical high and low pointers (for variables x2 and x3 in this case).

map: applies a user defined function to each key/value
pair in the hashtable

reduce: applies a user defined function to each key/value
pair in the hashtable and returns a value (e.g. the sum
of all of the values)

predicateCount: return the number of key/value pairs
in the hashtable that satisfy the given predicate

sync: perform all outstanding delayed insert, access,
and remove operations

4. PARALLEL DISK-BASED ALGORITHMS
FOR BDDS

The proposed Roomy-based parallel disk-based BDD pack-
age uses the SQBDD (shared QBDD) representation de-
scribed in [21]. This package does not support BDDs that
are shared among multiple Boolean expressions (although
this feature can easily be implemented in the package), thus
making the representation a quasi-reduced BDD (QBDD).
Although [2] describes cases in which the ROBDD repre-
sentation can be a few times more compact than the corre-
sponding (S)QBDD representation, this is not the case for
the problems considered here. The focus of the experimen-
tal results (see Section 5) is on the solutions to combinato-
rial problems (the N-queens problem and 3-D tic-tac-toe) in
which the inherent regularities and symmetries of the prob-
lem lead to QBDDs that are only at most 15 % larger than
the corresponding ROBDD (the percentage was observed ex-
perimentally). Since most operations in Roomy are delayed
and processed in batches, the locality advantage of a the
QBDD representation is important (a node in a QBDD can
only have as children the nodes at the immediate next level).
This is especially true in cases where the QBDD represen-

tation is not much larger than the ROBDD representation,
as is the case here.

Since the QBDDs for the considered problems are close in
size to their corresponding ROBDDs, it means that one can
solve problems one or two orders of magnitude larger using
disk-based methods than by using a RAM-based alternative.

The rest of this section presents a brief implementation
description of our package, followed by a high-level descrip-
tion of the main operations: apply, any-SAT and SAT-count.

4.1 Implementation Description
Each BDD is represented in a quasi-reduced form. This

means that, when a node at level i has a child at level
j > i + 1, there are j − i − 1 padding nodes inserted in
the BDD, one at each level between i + 1 and j − 1, thus
creating an explicit path from the node at level i to its child
at level j. These padding nodes would be considered redun-
dant nodes in an ROBDD implementation, and thus, would
not exist. However, a QBDD needs such redundant nodes
to maintain the invariant that each node at a certain level
only has children at the immediate next level.

Our implementation of a QBDD maintains a data struc-
ture that contains:

• d, the depth of the BDD.

• Nodes, an array of d Roomy-hashtables. Nodes[i] is a
Roomy-hashtable that contains all the nodes at level i
of the BDD in key-value form. The key is the BDD-
unique node id and the value is a pair of ids (low(id),
high(id)), which reference the children of the node.
Each of the children is either at level i + 1 or is a
terminal node.

This representation allows the delayed lookup of a node
in the BDD by providing only its unique id. Since each



BDD level has its own Roomy-hashtable, when processing a
certain level i we only need to inspect Nodes[i] (the current
nodes), Nodes[i + 1] (the child nodes) and, in some cases
Nodes[i−1] (the parents). Inspecting the entire BDD is not
necessary. This is important for very large BDDs, in which
even the nodes at a single level can overflow the aggregate
RAM of a cluster.

4.2 The APPLY Algorithm
The foundation that most BDD algorithms are built upon

is the apply algorithm. apply applies a Boolean operation
(like or, and, xor, implication, a.s.o) to two BDDs. If
BDDs A and B represent Boolean expressions fA and fB

respectively, then AB = op(A,B) is the BDD which rep-
resents the Boolean expression op(fA, fB). The traditional
RAM-based apply algorithm performs this operation by em-
ploying a depth-first algorithm, as explained in [5]. A mem-
oization table in which already computed results are stored
increases the performance of the algorithm from exponential
to quadratic in the number of input nodes. The pseudo-code
is presented in Algorithm 1.

Algorithm 1 RAM-based depth-first apply

Input: BDD A with root-node n1, BDD B with root-node
n2, Boolean operator op

Output: n, the root node of a BDD representing op(A,B)
Init M (memoization table for new nodes)
if M(n1, n2) was already set then

return M(n1, n2)
if n1 ∈ {0, 1} AND n2 ∈ {0, 1} then

n = op(n1, n2)
else if var(n1) = var(n2) then

n← new Node(var(n1), apply(low(n1), low(n2), op),
apply(high(n1), high(n2), op))

else if var(n1) < var(n2) then

n← new Node(var(n1), apply(low(n1), n2, op),
apply(high(n1), n2, op))

else

n← new Node(var(n2), apply(n1, low(n2), op),
apply(n1, high(n2), op))

set M(n1, n2)← n
return n

To create a version of apply applicable for data stored
in secondary memory, [21] converts the requirements on the
implicit process stack in Algorithm 1 into an explicit require-
ment queue. This is the main idea behind converting a DFS
algorithm into a BFS one. Our parallel disk-based package
uses the same framework to create an efficient parallel disk-
based apply. The structure used is a parallel queue, imple-
mented on top of a Roomy-hashtable. A parallel queue re-
laxes the condition that all requirements must be processed
one by one to a condition that all requirements at a certain
level in the BFS must be processed before any requirement
at the next level. In this way, parallel processing of data at
each BFS level is enabled.

An important feature that Roomy provides for any appli-
cation is load balancing. For the BDD package, load balanc-
ing means that the BDD nodes are distributed evenly across
the disks of a cluster. This is achieved by assigning each
BDD node to a random disk. Hence, a BDD node is not nec-
essarily stored near its children, and accessing the children
of a node in an immediate manner would lead to long de-

lays due to network and disk latency. Using delayed batched
operations, as Roomy does (see Section 3), is the only ac-
ceptable solution if the very large BDDs are being treated
as monolithic. Other approaches decompose the large BDD
into smaller BDDs and then solve each of them separately
on various compute nodes in the cluster [6]. These two solu-
tions are not mutually exclusive. A decomposition approach
can be adapted to our BDD package as well. For the rest
of the paper, only the case of very large monolithic BDDs
which are not decomposed into smaller BDDs is considered.

The parallel disk-based apply algorithm consists of two
phases: an expand phase and a reduce phase, described in
Algorithms 2 and 3, respectively. The expand phase creates
a valid but larger than necessary QBDD. It can be reduced
to a smaller size, because it contains non-unique nodes. Non-
unique nodes are nodes at the same level i which represent
identical sub-BDDs. However, the fact that they are dupli-
cates cannot be determined in the expand phase. expand

is a top-down breadth-first scan. The purpose of the re-

duce phase is to detect the duplicates at each level and keep
only one representative of each duplication class. reduce is
a bottom-up scan of the BDD returned by expand.

Notation.
The notation k → v is used to represent a key-value entry

in a Roomy-hashtable.
All ids are Roomy-unique integers that can be passed back

to Roomy as keys in a Roomy-hashtable.
A forwarding node is a temporary node created during the

reduce phase. Such a node acts as a pointer to a terminal
node, meaning that all parents pointing to the node should
actually point to the terminal node. When it is no longer
needed, it is removed.

If node is a forwarding node in the reduce phase, the nota-
tion fwd(idnode) is used to represent the id of the permanent
node that node points to.

Implementation aspects.
The expand algorithm uses per-level distributed disk-based

requirement queues Q and Q′, which are implemented as
Roomy-hashtables. All entries in Q are of the form (idA, idB)
→ (idAB , parent–idAB).

The nodes at a certain level in AB are stored in Nodes[i].
In AB, idAB = op(idA, idB). idAB is a low or high child of
parent–idAB , a node at the previous level in AB.
expand creates a partially-reduced OBDD, which reduce

converts into a QBDD.
Note that our expand algorithm differs from the expand

presented in [21] in the following way: in our case all data
structures are distributed and stored on the parallel disks
of a cluster; there is no need for any QBDD level to fit
even in the distributed RAM at any time; all the operations
that involve reading or writing remote data are delayed and
batched; in line 7, unique ids for the left and right child of
a node are created in advance (in the next iteration it will
be found that some are duplicates), while in [21] a per-level
memoization table named “operation-result-table” is used.
When duplicates are found, the parent nodes of the dupli-
cates are updated to point to the child representative of the
duplicate class. A per-level memoization table would not
work for parallel expand algorithms because all reads are
delayed, and so one cannot immediately check whether a
certain node has already been computed.



Algorithm 2 Parallel disk-based expand

Input: QBDDs A, B and Boolean operator op
Output: QBDD AB = op(A, B)
1: Initialize Q with the entry representing the root of AB:

(root–idA, root-idB)→ (new Id(),N/A)
2: level← 0, Q′ ← ∅
3: while level ≤ max(depth(A), depth(B)) AND Q 6= ∅

do

4: Remove entries with duplicate keys from Q and up-
date their parent nodes (extracted from the entry’s
value) to point to the id found in the value of the
representative of the duplicate class.

5: for each entry (idA, idB) → (idAB, parent–idAB) in
Q do

6: Perform delayed lookup of the child nodes of
idA : low(idA) and high(idA) and
of idB : low(idB) and high(idB)

7: id′ ← new Id()
id′′ ← new Id()
Create two entries in Q′:
(low(idA), low(idB))→ (id′, idAB)
and, respectively,
(high(idA), high(idB))→ (id′′, idAB)

8: Insert node idAB → (id′, id′′) in Nodes[level]
9: level← level + 1

10: Q← Q′, Q′ ← ∅

Algorithm 3 Parallel disk-based reduce

Input: a QBDD AB, returned by expand

Output: a QBDD AB′, resulted from AB by eliminating
non-unique nodes

1: level← depth(AB)
2: while level ≥ 1 do

3: for each node entry (id) → (low(id), high(id)) in
Nodes[level] do

4: if low(id) is a forwarding node then

5: low(id)← fwd(low(id))
6: if high(id) is a forwarding node then

7: high(id)← fwd(high(id))
8: if low(id) = high(id) = T (terminal node 0 or 1)

then

9: Make this a forwarding node to T .
10: Remove non-unique nodes (duplicates) at the current

level. Update the parents of the duplicate nodes to
point to the representative of the duplicate class. This
is duplicate detection.

11: level← level + 1

Satisfying Assignments.
The any-SAT algorithm simply follows any path in the

QBDD that ends in the terminal 1. When a high child is
followed, the level’s variable is set to 1. When a low child is
followed, the level’s variable is set to 0. When terminal 1 is
reached, the assigned values of all the variables are listed.

The SAT-count algorithm is implemented with a top-down
breadth-first scan of the QBDD. Each node in the QBDD
has a counter associated with it. Initially, the root of the
QBDD has its counter set to 1 and all other counters are set
to 0. At each level in the breadth-first scan, the counter of
each node is added to each of its children’s counters. When
a child of a node at level i is the terminal node 1, update a

global counter by adding the node’s local counter multiplied
by 2m, where m = depth(QBDD) − i − 1, to it. All up-
dates are delayed and batched, to maintain the parallelism
of the scan. After the scan finishes and the updates are pro-
cessed, the global counter contains the number of satisfying
assignments of the QBDD.

5. EXPERIMENTAL RESULTS
Hardware and Software Configurations.

The Roomy-based parallel disk BDD package was experi-
mentally compared with BuDDy [8], a popular open-source
BDD package written in C/C++. BuDDy was used with
two different computer architectures.

• Server: with one dual-core 2.6 GHz AMD Opteron
processor, 8 GB of RAM, running HP Linux XC 3.1,
and compiling code with Intel ICC 11.0.

• Large Shared Memory: with four quad-core 1.8 GHz
AMD Opteron processors, 128 GB of RAM, running
Ubuntu SMP Linux 2.6.31-16-server, and compiling
code with GCC 4.4.1.

While BuDDy could make use of all of the RAM on the
machine with 8 GB, it was only able to use approximately
56 GB out of 128 GB in the other case, because the array
used to store the nodes of the BDDs was limited to using a
32-bit index.

For Roomy, the architecture was a cluster of the 8 GB
machines mentioned above, using a Quadrics QsNet II in-
terconnect. Each machine had a 40 GB partition on the local
disk for storage. This provides an upper bound for the total
storage used at any time. For smaller problem instances,
8 machines of the cluster were used, with larger examples
using 32 or 64 machines.

Test Problems.
Four cases were tested: BuDDy using a maximum of 1, 8,

or 56 GB of RAM; and Roomy. These four cases were tested
on two combinatorial problems:

• N-queens: counting the number of unique solutions
to the N-queens problem.

• 3-dimensional tic-tac-toe: counting the number of
possible tying configurations when placing N X’s and
64−N O’s in a 4×4×4 3D tic-tac-toe board.

In both cases, the experiments were run with increasing
values of N . For N-queens, this increases the problem diffi-
culty by increasing the dimension of the board. For 3D tic-
tac-toe, this increases the difficulty by increasing the number
of possible positions to consider (with maximum difficulty at
32 out of 64 positions for each X and O).

The rest of this section describes the details of each prob-
lem, how the solutions are represented as Boolean formulas,
and gives experimental results.

5.1 Counting N-Queens Solutions
Problem Definition.

The N-queens problem considered here is: how many dif-
ferent ways can N queens be placed on an N×N chess board
such that no two queens are attacking each other? The size
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Figure 3: Running times for the N-queens problem.

of the state space is N !, corresponding to an algorithm that
successively places one queen in each row, and for row k
chooses one of the remaining N − k columns not containing
a queen.

The current record for the largest N solved is 26, achieved
using massively-parallel, FPGA-based methods [26]. The
more general BDD approach described here is not meant to
directly compete with this result, but to serve as a method
for comparing traditional RAM-based BDD packages and
our parallel-disk based approach. The N-queens problem is
often used as an illustration in introductions to the subject,
and a solution to the problem comes with BuDDy as an
example application.

The following defines a Boolean formula that represents all
of the solutions to a given instance of the N-queens problem.

First, define N2 variables of the form xi,j , where xi,j is
true iff a queen is placed on the square at row i column j.
Then, define Si,j , which is true iff there is a queen on square
i, j and not on any square attacked from that position.

Si,j = xi,j ∧ ¬xi1,j1 ∧ ¬xi2,j2 ∧ . . .

The constraint that row i must have exactly one queen is

Ri = Si,1 ∨ Si,2 ∨ . . . ∨ Si,N

And finally, the board has one queen in each row.

B = R1 ∧R2 ∧ . . . ∧RN

The number of solutions is computed by counting the num-
ber of satisfying assignments of B.

Experimental Results.
Figure 3 shows the running times for the N-queens prob-

lem using BuDDy with a maximum of 1, 8, or 56 GB of
RAM, and using our BDD package based on Roomy.

BuDDy with 1 GB is able to solve up to N = 12, which
finished in 15 seconds. BuDDy with 8 GB is able to solve
up to N = 14, which finished in 16.7 minutes. For higher N ,
BuDDy runs out of RAM. This demonstrates how quickly
BDD computations can exceed available memory, and the
need for methods providing additional space.

Even when given up to 56 GB, BuDDy can not complete
N = 15. For smaller cases, the version using more memory is
slower because the time for memory management dominates
the relatively small computation time.

Table 1: Sizes of largest and final BDDs, and number of
solutions, for the N-queens problem (* indicates that BuDDy
exceeded 56 GB of RAM without completing).

Largest Largest
N Buddy BDD Roomy BDD Ratio

8 10705 11549 1.08

9 44110 50383 1.14

10 212596 234650 1.10

11 1027599 1105006 1.08

12 4938578 5250309 1.06

13 26724679 29370954 1.10

14 153283605 165030036 1.08

15 * 917859646 –

16 * 3380874259 –

Final Final # of
N Buddy BDD Roomy BDD Ratio Solutions

8 2451 2451 1.00 92

9 9557 9557 1.00 352

10 25945 25945 1.00 724

11 94822 94822 1.00 2680

12 435170 435170 1.00 14200

13 2044394 2044394 1.00 73712

14 9572418 9572418 1.00 365596

15 * 51889029 – 2279184

16 * 292364273 – 14772512

The Roomy-based package is able to solve up to N = 16,
which finished in 28.4 hours. The figure shows the running
times for N ≤ 14 using 8 compute nodes, N = 15 using
32 nodes, and N = 16 using 64 nodes. The results demon-
strate that parallel-disk based methods can extend the use of
BDDs to problem spaces several orders of magnitude larger
than methods using RAM alone.

For the cases using BuDDy, the versions using more RAM
had a time penalty due to the one-time cost of initializing
the larger data structures. For Roomy, the time penalties
for the smaller cases are primarily due to synchronization
of the parallel processes, which is amortized for the longer
running examples.

For the computations using Roomy, BuDDy was first used
to compute each of the N row constraints, Ri. Then, Roomy
was used to combine these into the final BDD B. This was
done to avoid performing many operations on very small
BDDs with Roomy, which would cause many small, ineffi-
cient disk operations.

Table 1 shows the sizes of the largest BDD, the final BDD,
and the number of solutions for 8 ≤ N ≤ 16. In this case,
the largest BDD produced by Roomy was approximately
22 times larger than the largest BDD produced by BuDDy
(for instances that were solved). Table 1 also shows that,
for this problem, the additional nodes required by the use
of quasi-reduced BDDs, instead of the traditional fully re-
duced BDDs, increase BDD size by at most 14 percent. We
consider this cost acceptable given the increase in locality
QBDDs provide the computation.

5.2 Counting Ties in 4×4×4 3D Tic-Tac-Toe
Problem Definition.

This problem deals with a generalization of the traditional
game of tic-tac-toe: two players, X and O, take turns mark-
ing spaces in a 3×3 grid, attempting to place three marks in
a given row, column, or diagonal. In this case, we consider
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a 3-dimensional 4×4×4 grid.
The question considered here is: how many possible tie

games are there when X marks N spaces, with O filling the
remaining 64 − N? As N is increased from 1 to 32, both
the number of possible arrangements and the difficulty of
the problem increase. To the best of our knowledge, this
problem has not been solved before.

The Boolean formula representing the solution uses 64 vari-
ables of the form xi,j,k, which are true iff the corresponding
space is marked by X. First, a BDD representing placements
that have exactly N out of 64 spaces marked with X is con-
structed. Then, BDD constraints for each possible sequence
of four spaces in a row are successively added. The con-
straints are of the form: ¬(all four spaces are X) ∧ (at least
one space has an X).

The number of possible ties is computed by counting the
number of satisfying assignments of the final BDD.

Experimental Results.
Figure 4 shows the running times for the 3D tic-tac-toe

problem using BuDDy with a maximum of 1, 8, or 56 GB
of RAM, and using the Roomy-based package. As in the
N-queens problem, BuDDy was used to compute several
smaller BDDs, which were then combined into the final BDD
using Roomy.

BuDDy with 1 GB of RAM is able to solve up to N = 18,
finishing in 127 seconds. BuDDy with 8 GB of RAM is able
to solve up to N = 21, finishing in 40 minutes. Unlike the
N-queens problem, increasing the available RAM from 8 to
56 GB increases the number of cases that can be solved, up
to N = 23, which finished in 5.5 hours. Roomy was able
to solve up to N = 24, finishing in under 30 hours using
64 nodes.

Table 2 shows the sizes of the largest BDD, the final BDD,
and the number of solutions for 14 ≤ N ≤ 24. The smallest
number of X’s that need to be placed to force a tie is 20,
yielding 304 tying arrangements. The number of possible
ties then increases rapidly, up to over 5 billion for N = 24.

For the 3D tic-tac-toe problem, all of the QBDDs used by
Roomy are exactly the same size as the ROBDDs used by
BuDDy. So, like the N-queens problem, using the possibly
less compact representation is not an issue here.

Table 2: Sizes of largest and final BDDs, and number of
tie games, for the 3D tic-tac-toe problem (* indicates that
BuDDy exceeded 56 GB of RAM without completing).

Largest Largest
X’s Buddy BDD Roomy BDD Ratio

14 389251 389251 1.00

15 671000 671000 1.00

16 1350821 1350821 1.00

17 4378636 4378636 1.00

18 11619376 11619376 1.00

19 24742614 24742614 1.00

20 42985943 42985943 1.00

21 113026291 113026291 1.00

22 383658471 383658471 1.00

23 988619402 988619402 1.00

24 * 2003691139 –

Final Final # of
X’s Buddy BDD Roomy BDD Ratio Ties

14 1 1 1.00 0

15 1 1 1.00 0

16 1 1 1.00 0

17 1 1 1.00 0

18 1 1 1.00 0

19 1 1 1.00 0

20 8179 8179 1.00 304

21 433682 433682 1.00 136288

22 6560562 6560562 1.00 9734400

23 60063441 60063441 1.00 296106640

24 * 373236946 – 5000129244

6. CONCLUSIONS AND FUTURE WORK
This work provides a parallel disk-based BDD package

whose effectiveness is demonstrated by solving large combi-
natorial problems. Those problems are typical for a broad
class of mathematical problems whose large state space con-
tains a significant degree of randomness.

Future work will tackle the verification of large industrial
circuits. A parallel disk-based ROBDD representation will
be provided, together with modified versions of the BFS al-
gorithms that now use QBDDs. It is expected that this
future implementation will perform better for industrial cir-
cuits, while we believe that QBDDs will still be more suit-
able to combinatorial problems. These expectations coincide
with the motivation of using ROBDDs in [2] and [24].

Extensive research shows that, for many industrial prob-
lems, dynamic variable reordering can yield significant space
savings, which get translated into time savings. Providing a
parallel disk-based method for dynamic variable reordering
is also part of the future work.
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