
System-level Transparent Checkpointing for

OpenSHMEM

Rohan Garg1⋆, Jérôme Vienne2, and Gene Cooperman1⋆

1 Northeastern University, Boston MA 02115, USA,
{rohgarg,gene}@ccs.neu.edu

2 Texas Advanced Computing Center,
The University of Texas at Austin, TX 78758, USA,

viennej@tacc.utexas.edu

Abstract. Fault tolerance is an active area of research for OpenSHMEM
programs. In this work, we present the first approach using system-level
transparent checkpointing. This complements an existing approach based
on application-level checkpointing. Application-level checkpointing has
advantages for algorithm-based fault tolerance, while transparent check-
pointing can be invoked by the system at an arbitrary time. Unlike the
earlier application-level work of Hao et al., this system-level approach cre-
ates checkpoint images in stable storage, thus enabling restart at a later
time or even process migration. An experimental evaluation is presented
using NAS NPB benchmarks for OpenSHMEM. In order to support this
work, The design of DMTCP (Distributed MultiThreaded CheckPoint-
ing) was extended to support shared memory regions in the absence of
virtual memory.

Keywords: Checkpointing; fault tolerance; OpenSHMEM; process mi-
gration

1 Introduction

Checkpoint-restart is an area of research with a long history Work in this area
has largely been split according to two approaches: system-level checkpointing
and application-level checkpointing. System-level checkpointing typically is also
transparent, in that it can be invoked by an external system service or by the
operating system. Application-level checkpointing can also support transparent
checkpointing by interposing on existing libraries.

This work presents the first system-level checkpointing solution for OpenSH-
MEM [9, 18]. The DMTCP (Distributed MultiThreaded CheckPointing) plat-
form [2] is used in this approach. DMTCP directly supports checkpointing of
distributed computations. This contrasts with a previous application-level ap-
proach to checkpointing by Hao et al. [15], which relies on interposing on the
OpenSHMEM runtime library itself.

⋆ This work was partially supported by the National Science Foundation under
Grant ACI-1440788.



2 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

In principle, an alternative approach would be to use an implementation of
OpenSHMEM on top of MPI, and then invoke system-level checkpointing of
OpenSHMEM through checkpointing of the underlying MPI checkpoint-restart
service. However, this is not feasible, since the current MPI implementations del-
egate to BLCR [10, 17] for checkpointing of a single process, and BLCR does not
support the POSIX SysV shared memory objects on which most OpenSHMEM
implementations depend. See Section 4 for a fuller discussion.

The barriers to supporting system-level checkpointing for OpenSHEM can be
understood by reviewing the primary features of OpenSHMEM [18]. The Open-
SHMEM standard is motivated by at least three extensions from shared memory
between processes on a single computer to shared memory between computers
on distributed hardware. SysV system calls such as shmget() and semop() must
be extended to distributed hardware. And an RDMA-like technology such as
InfiniBand must be used to efficiently support one-sided communication.

Specifically, the difficulties of supporting OpenSHMEM with a traditional
checkpoint-restart package are three-fold.

1. shared memory objects (e.g., shmget() in SysV) were generalized from POSIX
system calls on one computer to distributed hardware.

2. InfiniBand or a related RDMA technology is required. The OpenSHMEM
standard [18] insists on the importance of one-sided communication: “The
key feature of OpenSHMEM is that data transfer operations are one-sided
in nature.” [18, Sect. 2]. InfiniBand provides this.

3. synchronization primitives are generalized from APIs for inter-thread and
inter-process communication [18, Sect. 8.5 and 8.8].

As mentioned earlier, an MPI-based checkpoint-restart approach relies on
BLCR. Unfortunately, BLCR does not support either of items 1 or 3 above.
Case 2 is supported by the various checkpoint-restart services of different MPI
implementations. But Case 2 is not directly supported by a checkpointing pack-
age itself.

A significant barrier to using the DMTCP checkpointing system was the
inability of DMTCP to support large shared memory regions on systems that lack
virtual memory. Typically, supercomputers do not support virtual memory. An
important contribution of the current work is extending the design of DMTCP
to support large shared memory regions in the absence of virtual memory (see
Section 3). Typical OpenSHMEM implementations require this, due to their use
of SysV shared memory objects.

One can also contrast the advantages and disadvantages of the current work
with the prior checkpointing work of Hao et al. [15]. Hao et al. copy the shared
memory region along with privately mapped memory to the RAM of a peer pro-
cess during runtime. In doing so, they protect against a single computer node
failure, an important failure mode to be considered in the future exascale gener-
ation. In contrast, the current work saves into stable storage (typically a Lustre
filesystem, on a supercomputer) at checkpoint time. This has the advantage that
the current work supports migration of an OpenSHMEM computation to a new
cluster, as well as saving a computation for restart on the same cluster at a later



System-level Transparent Checkpointing for OpenSHMEM 3

time — for example, for long-running jobs on a batch system where the batch
queue limits users to a maximum runtime slot of 24 hours.

The current work is based on the reference implementation of OpenSHMEM,
on top of the MVAPICH2 implementation of MPI. Thus, this work also relies
on the ability of DMTCP to directly checkpoint MVAPICH2. (DMTCP treats
MVAPICH2 like any other distributed application, and does not rely on any
MPI-specific information.)

Finally, because DMTCP does not depend on any MPI implementation, the
result of this work opens the way for future support for hybrid MPI+OpenSHMEM
codes. For example, MVAPICH2-X [27] provides advanced MPI features and a
unified high-performance runtime for both MPI and PGAS programming models
on InfiniBand clusters. MVAPICH2-X used all optimized features for communi-
cations and memory resources on Infiniband Cluster provided by the MPI library
MVAPICH2 [19, 26] to improve the performance and scalability of communi-
cation on PGAS programming models [23, 22]. MVAPICH2-X supports multi-
ples PGAS models such as Unified Parallel C and UPC++ (based on Berkeley
UPC 2.20.0), OpenSHMEM (based on the OpenSHMEM reference implementa-
tion 1.0h) and Coarray Fortran (CAF) (based on Houston CAF implementation
3.0.39).

The rest of this paper is organized as follows. Section 2 briefly reviews the
internals of DMTCP. Section 3 describes the places in which DMTCP needed
to be extended in order to support the features of OpenSHMEM in a user pro-
gram. Section 4 presents the related work. Section 5 presents an experimental
evaluation, which was executed on the Stampede supercomputer at the Texas
Advanced Computing Center (TACC). Section 6 then offers a conclusion and
the plans for future work.

2 Review of Checkpointing

The architecture of DMTCP is described in Figure 1. A centralized DMTCP co-
ordinator process accepts requests for checkpointing. Upon checkpoint, it sends a
checkpoint message to a checkpoint thread within each user process. The check-
ponit thread “quiesces” the user threads, interrogates the kernel for state (e.g,
open file descriptors and file offsets), and then copies the memory to a check-
point image file. There is one checkpoint image file for each user process. See [2]
for more details.

The original version of DMTCP supported only TCP-based sockets. Later,
Cao et al. added support for checkpointing InfiniBand without the need to first
disconnect an MPI computation from the network [8].

Two areas of novelty that are not reported elsewhere are the ability of
DMTCP to checkpoint UNIX domain sockets and the ability to use leader elec-
tion in order to checkpoint to correctly restore a single shared copy of a shared
memory region, rather than restoring separate private memory regions on restart
(one memory region for each process, or PE in the context of OpenSHMEM).



4 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

DMTCP 

COORDINATOR

CKPT MSG

CKPT THREAD

USER PROCESS 1

S
IG

U
S

R
2

S
IG

U
S

R
2

USER THREAD B

USER THREAD A

CKPT MSG

S
IG

U
S

R
2

connection
socket

USER THREAD C

CKPT THREAD

USER PROCESS 2

Fig. 1. The distributed architecture of DMTCP

3 Design modification of DMTCP to Support

OpenSHMEM

The design of DMTCP had to be extended in three areas in order to support
both checkpointing of modern MPI implementations and checkpointing of Open-
SHEM. The three areas are UNIX domain sockets, SysV shared memory objects,
and InfiniBand. The addition of support for InfiniBand is reported elsewhere [8].
This work describes the design of the first two capabilities.

UNIX domain sockets The original DMTCP design in 2009 [2] was sufficient
to support the MPI implementations at that time. However, those earlier MPI
implementations generally did not use UNIX domain sockets, and could be con-
figured so as to avoid the use of shared memory regions for communication.

The design of support for UNIX domain sockets is similar to the TCP socket
support reported in [2]. UNIX domain sockets allow one to pass a file descriptor
from one process to another within the same Linux host. As with TCP sockets,
one sends a “cookie” (a unique 64-bit value) through the UNIX domain socket.
When the receiver reads it on the UNIX domain socket, it is known that there
is no more data in the network.

SysV shared memory objects Second, the DMTCP design was extended to sup-
port SysV shared memory objects. The original DMTCP design [2] supported
only BSD-style shared memory regions (using mmap and “MAP SHARED”).



System-level Transparent Checkpointing for OpenSHMEM 5

Recently, support for SysV shared memory objects was added in order to sup-
port more recent MPI implementations.

Unfortunately, the design of SysV shared memory for MPI did not extend to
support OpenSHMEM. OpenSHMEM requires support for large shared memory
regions created by the user’s application. In contrast, MPI directly creates only
small shared memory regions internal to the MPI library itself, as an accelerator
for communication between distinct MPI processes on the same host.

The DMTCP design depends on delegating to a single-process checkpointing
package, under the name of MTCP. Each MTCP instance saves every shared
memory region within that process, and later restore every shared memory region
on restart. It is only at a later stage that DMTCP employs a leader election
strategy to: (i) discard duplicate shared memory regions not owned by the leader;
(ii) embed the leader’s shared memory region within a SysV shared memory
object; and (iii) send the newly created SysV shared memory object from the
leader’s process to all other processes on the same host.

While this approach works in most common cases, it fails when for large
shared-memory areas. During the initial stages of restart, each process has
mapped the shared memory region as a private region. Where virtual memory
is available, this is not a problem. But on a supercomputer such as Stampede
in our case, there is typically no support for virtual memory. This is because
virtual memory normally resides on a hard disk, and supercomputer compute
nodes generally do not have any local disks. Paging to a remote storage node on
a supercomputer would produce an unacceptable performance penalty.

In order to support checkpointing of SysV shared memory regions in the
absence of virtual memory, an alternative strategy was created. Every shared
memory region is created initially as a region of zero pages. In Linux, zero pages
do not require significant resources, and are easily supported even in the absence
of virtual memory.

At checkpoint time, the MTCP component continues to write individual
copies of the shared memory region into the process-specific checkpoint image
file. But at the time of restart, instead of reading back into RAM the data of
the shared memory region, MTCP simply writes the filename of the checkpoint
image file for that process, and the file offset and size of the shared memory
region in question. This information is written only into the first page of shared
memory, and the remaining region remains as zero pages.

Finally, the same leader election strategy can be used for restart as with the
existing SysV shared memory support. But in this case, the leader does not have
the shared memory data resident in RAM. Instead, the leader reads the shared
memory data into RAM. only at this late stage of restart, and after an appropri-
ate host-wide barrier. All other processes wait while the leader reads the shared
memory data. While this makes restart slower, this is generally acceptable, since
checkpointing is the common operation, and restart is the rare operation.

OpenSHMEM and the hardware cache One of the weaknesses of the current ap-
proach concerns the OpenSHMEM support for data cache control, i.e., “mech-
anisms to exploit the capabilities of hardware cache”. This is not provided by



6 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

DMTCP since that requires operating system extensions either to POSIX or to
common Linux systems mechanisms such as the proc filesystem. An alternative
approach that directly supports the abstractions of the OpenSHMEM library,
such as [15], has the potential to use the OpenSHMEM API to save and restore
information about the capabilities of the hardware cache.

4 Related Work

The OpenSHMEM standard is described in [9, 18]. Research in the area of
Checkpoint-Restart for OpenSHMEM and other PGAS models is still sparse.
In 2011, Ali et al. [1] proposed an application-specific fault tolerance mecha-
nism. They achieved fault-tolerance using redundant communication and shadow
copies. Hao et al. [15, 16] have proposed a more generic approach based on User
Level Fault Mitigation (ULFM) using shadow memory in which the shared mem-
ory regions of peers are backed up by peers. The user code is responsible for
invoking a checkpoint and for restoring correct operation during a restart.

An important distinction between the approach of Hao et al. [15] and the
current work is that Hao et al. copy the shared memory region along with pri-
vately mapped memory to a peer process during runtime. This places added
pressure on the network fabric and on the RAM. (The latter is significant since
supercomputers typically do not support virtual memory.) In the current work,
the shared memory region and privately mapped memory are copied to stable
storage (often a Lustre filesystem on a supercomputer). This places added pres-
sure on the Lustre filesystem at the time of checkpoint. Thus, each strategy has
its separate advantages and problems.

Of course, a second important distinction is that the approach of Hao et al.
directly support User Level Fault Mitigation (ULFM), while the current work
does not directly support such a strategy.

Multiple MPI libraries support SHMEM parallel programming model. Open
MPI [12] supports OpenSHMEM since version 1.7.5. In [14], Hammond et al.
introduced OSHMPI [13], another implementation of SHMEM over MPI taking
advantages of MPI-3 one-sided communication. As DMTCP is doing a transpar-
ent checkpoint restart, all these MPI implementations can be checkpointed and
restarted transparently.

Since some implementations of OpenSHMEM are built on top of MPI, it is
important to also discuss approaches to checkpointing MPI. As described earlier,
such approaches split into an application-specific and system-level approach. For
application-level checkpointing of MPI one notes [6, 7]. These packages provide
hooks by which scientific applications on top of MPI can easily build their own
checkpoint-restart routines. Such solutions add complexity at the petascale level,
since they are not transparent to the end programmer.

For system-level checkpointing of OpenSHMEM, it would be tempting to
employ an OpenSHMEM built on top of MPI, and then checkpoint the under-
lying MPI. Unfortunately, all of the checkpoint-restart services of current MPI
implementations are built on top of BLCR [10, 17]. BLCR does not support the



System-level Transparent Checkpointing for OpenSHMEM 7

SysV IPC objects. In particular, it does not support the POSIX-standard SysV
shared memory (shm) objects [4].

Many MPI implementations provide a checkpoint-restart service based on
BLCR. At the time of checkpoint, the MPI checkpoint-restart service detaches
from the network, and then invokes BLCR as a single-process checkpointing util-
ity for the individual processes. Among the MPI implementations using BLCR
are OpenMPI [20], LAM/MPI [30], MPICH-V [5], and MVAPICH2 [11].

As stated above, BLCR does not support SysV shared memory objects.
Hence, there is a problem if an OpenSHMEM implementation uses SysV shared
memory objects (which is a common choice on a POSIX platform), and if the
OpenSHMEM implementation is implemented on top of MPI. When a check-
point is requested, the request will be passed to the checkpoint-restart service of
the underlying MPI, which will delegate to BLCR. The BLCR FAQ states that
“Such [SysV ipc] resources are silently ignored at checkpoint time and are not
restored.”

Finally, DMTCP (Distributed MultiThreaded CheckPointing) [2] provides
checkpointing for general distributed computations, independently of MPI. There
have also been at least three other checkpoint-restart systems that are inde-
pendent of MPI and still able through Linux kernel modules to checkpoint dis-
tributed computations [21, 25, 24, 31]. However, none of these latter three appear
to be under active development, and so their details are not discussed here.

Even though DMTCP operates independently of MPI, the OpenSHMEM ref-
erence implementation being used does depend on MPI. For this reason, DMTCP
is checkpointing both OpenSHMEM and the MVAPICH implementation of MPI
in the experiments.

5 Experimental Evaluation

5.1 Experimental Setup

The experiments have been conducted on TACC’s Stampede supercomputer.
Stampede is currently the # 12 supercomputer on the top500 list [32] (as of
June, 2016). Stampede contains 6400 dual-socket eight-core Sandy-Bridge E5-
2680 server nodes with 32 GB of memory, called ”compute nodes”, and 16 quad-
socket eight-core Sandy-Bridge E5-4650 server nodes at 2.7 GHz with 1 TB of
memory, called ”large memory nodes”. The nodes are interconnected by Infini-
Band HCAs in FDR mode [33] and the operating system used is CentOS 6.4
with Linux kernel 2.6.32-431.el6. Experiments use the Lustre parallel filesystem
version 2.5.5 on Stampede.

To do this evaluation, we use the Intel compiler version 13.0.2.146 on Stam-
pede with the OpenSHMEM library. See [23] for a comparison of different Open-
SHMEM implementations on Stampede. For the evaluation, we use a port of
the NAS Parallel Benchmarks (NPB) to OpenSHMEM [29]. The NAS Parallel
Benchmarks for MPI are already well-documented and widely used as a bench-
mark [28, 34, 3]. It consists of a suite of parallel workloads designed to evaluate



8 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

performance of various hardware and software components of a parallel comput-
ing system.

5.2 Scalability

For evaluating performance, we measure the runtime overhead, the checkpoint
overhead, and the restart overhead as we scale up. The NAS BT and SP bench-
marks were used to measure the scalability of DMTCP.

Table 1 shows the number of nodes used and the number of processes per
node for a given number of processes (PE’s). The same configuration was used
for all the experiments.

Num Num Processes
of PE’s of Nodes per node

4 2 2
9 3 3
16 4 4
36 6 6
64 8 8
121 11 11
256 16 16

Table 1. Distribution of processes among nodes

4 9 16 36 64 121 256

Num. of PEs

0

20

40

60

80

100

T
im

e
 t

o
 c

o
m

p
le

te
 a

 r
u
n
 (

s
)

w/o DMTCP

w/ DMTCP

Fig. 2. Runtime overhead on OpenSHMEM NAS BT benchmark with DMTCP. BT
class A was used for 4, and 9 PE’s. BT class B was used for 16, 36, and 64 PE’s. BT
class C was used for the runs with 121 and higher PE’s.



System-level Transparent Checkpointing for OpenSHMEM 9

Figure 2 shows the runtime overhead imposed by DMTCP. The runtime
overhead is less than 1 % in all cases. DMTCP’s wrapper functions impose a
negligible runtime overhead and the cost is further amortized over the duration
of the run.

4 9 16 36 64 121 256

Num. of PEs

−20

0

20

40

60

80

100

120

C
h
e
c
k
p
o
in

t 
ti

m
e
 (

s
)

BT.A

BT.B

BT.C

Fig. 3. Checkpoint times for OpenSHMEM NAS BT benchmark with DMTCP. BT
class A was used for 4, and 9 PE’s. BT class B was used for 16, 36, and 64 PE’s. BT
class C was used for the runs with 121 and higher PE’s.

For a given number of PE’s, all the runs — with and without DMTCP —
were conducted on the same set of nodes to reduce the variability due to network
topology and traffic.

Average checkpoint times for the NAS BT benchmark are shown in Figure 3.
Five successive checkpoints were taken for a given number of processes on the
same set of nodes.

Figure 4 shows the average checkpoint times for the NAS SP benchmark. Five
successive checkpoints were taken for a given number of processes on the same
set of nodes. The checkpoint times include the cost of synchronizing the state of
distributed processes, including communications with the central checkpointing
coordinator.

For both benchmarks, BT and SP, checkpoint times grow linearly with the
total amount of checkpoint image data (see Figures 5 and 6). At the largest
scale, 256 processes, the total data written to the disk is 2.2 TB, with an effective
bandwidth of 20 GB per second.

In all the cases, the checkpoint times are dominated by the time to write the
checkpoint data to stable storage, and the cost for checkpointing the state of the
application is negligible.

The checkpoint image sizes for a single process for NAS benchmarks BT and
SP are shown in Figures 5 and 6, respectively.

Note that the checkpoint image size is directly proportional to the number
of processes sharing a computer node. For a given number of total processes, the
number of processes sharing a node is shown in Table 1.



10 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

4 9 16 36 64 121 256

Num. of PEs

−20

0

20

40

60

80

100

120

C
h
e
c
k
p
o
in

t 
ti

m
e
 (

s
)

SP.A

SP.B

SP.C

Fig. 4. Checkpoint times for OpenSHMEM NAS SP benchmark with DMTCP. SP
class A was used for 4, and 9 PE’s. SP class B was used for 16, 36, and 64 PE’s. SP
class C was used for the runs with 121 and higher PE’s.

4 9 16 36 64 121 256

Num. of PEs

0

1

2

3

4

5

6

7

8

9

C
h
e
c
k
p
o
in

t 
s
iz

e
 p

e
r 

p
ro

c
e
s
s
 (

G
B

)

BT.A

BT.B

BT.C

Fig. 5. Uncompressed checkpoint image sizes for OpenSHMEM NAS BT benchmark
with DMTCP. BT class A was used for 4, and 9 PE’s. BT class B was used for 16, 36,
and 64 PE’s. BT class C was used for the runs with 121 and higher PE’s.

We observe that largest component, 90-97 %, in a checkpoint image is an
OpenSHMEM shared-memory region, which is used for intra-node communica-
tion. Each process on a node contributes roughly 0.5 GB to the shared-memory
region. The rest of the checkpoint image contains process’s private memory re-
gions.

Figures 7 and 8 show the restart times for the NAS BT and SP benchmarks,
respectively, at different scales. The restart times include the cost of synchroniz-
ing the state of distributed processes, including communications with the central
checkpointing coordinator.

At the scale of 16 processes and beyond, the total memory footprint of the
checkpoint images required per node exceeds the available RAM on each node,



System-level Transparent Checkpointing for OpenSHMEM 11

4 9 16 36 64 121 256

Num. of PEs

0

1

2

3

4

5

6

7

8

9

C
h
e
c
k
p
o
in

t 
s
iz

e
 p

e
r 

p
ro

c
e
s
s
 (

G
B

)

BT.A

BT.B

BT.C

Fig. 6. Uncompressed checkpoint image sizes for OpenSHMEM NAS SP benchmark
with DMTCP. SP class A was used for 4, and 9 PE’s. SP class B was used for 16, 36,
and 64 PE’s. SP class C was used for the runs with 121 and higher PE’s.

32 GB, and hence, it’s not possible to directly map in the data from the check-
point image. On restart, while restoring the memory of a process, DMTCP iden-
tifies the OpenSHMEM shared-memory memory region in its checkpoint image,
reads in rest of the private data in to the memory of the process, and finally maps
in the shared-memory region as MAP SHARED in to the process’s memory.

The restart times are nearly twice as large compared to the checkpoint times.
We speculate this is because while writing the checkpoint images, Lustre buffers
the checkpoint data. On restart, any buffered data must first be synchronized
to the disk, transferred to each node, and then read in to the memory of each
process.

4 9 16 36 64 121 256

Num. of PEs

−50

0

50

100

150

200

250

300

R
e
s
ta

rt
 t

im
e
 (

s
)

BT.A

BT.B

BT.C

Fig. 7. Restart times for OpenSHMEM NAS BT benchmark with DMTCP. BT class
A was used for 4, and 9 PE’s. BT class B was used for 16, 36, and 64 PE’s. BT class
C was used for the runs with 121 and higher PE’s.



12 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

4 9 16 36 64 121 256

Num. of PEs

−50

0

50

100

150

200

250

C
h
e
c
k
p
o
in

t 
ti

m
e
 (

s
)

SP.A

SP.B

SP.C

Fig. 8. Restart times for OpenSHMEM NAS SP benchmark with DMTCP. SP class
A was used for 4, and 9 PE’s. SP class B was used for 16, 36, and 64 PE’s. SP class C
was used for the runs with 121 and higher PE’s.

6 Conclusion and Future Work

A system-level approach to checkpointing OpenSHMEM was presented. This
approach enables one to save the state of a computation to stable storage at
checkpoint time. This contrasts with the previous approach of Hao et al., in
which they save to the RAM of a remote peer computer. The latter approach
supports fault tolerance in the case of a single host failing, and has the potential
for a fast restart, since only one computer node must be restored. In contrast, the
current approach has the capability of saving the state of an entire computation
for restart at a later time on the same cluster, or else for migration to a new
cluster.

The current work saves the state of the shared memory region of each process
to stable storage. In this case (with 16 cores supporting 16 processes (16 PEs),
this can potentially place a large burden on the Lustre filesytem by saving
16 identical copies of the shared memory regions on a single host, when executing
at very large scale. While this was not observed to incur significant performance
penalty at the medium scale of the current experiments, it is intended to employ
a leader election strategy early (at checkpoint time) in a future implementation.
In this way only one copy of each shared memory region will be saved on a single
host. This will significantly reduce the time to write to back-end storage. (Note
that current OpenSHMEM implementations do not appear to replicate shared
memory regions across hots, and so deduplication on a single host is deemed to
be sufficient for good performance.)

References

1. Ali, N., Krishnamoorthy, S., Govind, N., Palmer, B.J.: A Redundant Communica-
tion Approach to Scalable Fault Tolerance in PGAS Programming Models. IEEE



System-level Transparent Checkpointing for OpenSHMEM 13

Computer Society, Los Alamitos, CA, United States(US). (Feb 2011)
2. Ansel, J., Arya, K., Cooperman, G.: DMTCP: Transparent Checkpointing for Clus-

ter Computations and the Desktop. In: IEEE Int. Symp. on Parallel and Dis-
tributed Processing (IPDPS). pp. 1–12. IEEE Press (2009)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Benchmarks. The Intl.
Journal of Supercomputer Applications 5(3), 63–73 (Fall 1991)

4. BLCR team: BLCR frequently asked questions (for version 0.8.5) (accessed June,
2016), https://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html#limitations

5. Bouteiler, A., Herault, T., Krawezik, G., Lemarinier, P., Cappello, F.: MPICH-V
Project: a Multiprotocol Automatic Fault Tolerant MPI. International Journal of
High Performance Computing Applications 20, 319–333 (2006)

6. Bronevetsky, G., Marques, D., Pingali, K., Rugina, R., McKee, S.A.: Compiler-
Enhanced Incremental Checkpointing for OpenMP Applications. In: Proc. of IEEE
International Parallel and Distributed Processing Symposium (IPDPS) (May 2009)

7. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated Application-
level Checkpointing of MPI Programs. In: PPoPP ’03: Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
pp. 84–94. ACM Press, New York, NY, USA (2003)

8. Cao, J., Kerr, G., Arya, K., Cooperman, G.: Transparent Checkpoint-Restart over
InfiniBand. In: Proc. of the 23rd Int. Symp. on High-performance Parallel and
Distributed Computing. pp. 13–24. ACM Press (2014)

9. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS Community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model.
pp. 2:1–2:3. PGAS’10, ACM, New York, NY, USA (2010)

10. Duell, J., Hargrove, P., Roman, E.: The Design and Implementation of Berke-
ley Lab’s Linux Checkpoint/Restart (BLCR). Tech. Rep. LBNL-54941, Lawrence
Berkeley National Laboratory (2003)

11. Gao, Q., Yu, W., Huang, W., Panda, D.K.: Application-Transparent Check-
point/Restart for MPI Programs over InfiniBand. In: ICPP ’06: Proceedings of
the 2006 International Conference on Parallel Processing. pp. 471–478. IEEE Com-
puter Society, Washington, DC, USA (2006)

12. Graham, R.L., Woodall, T.S., Squyres, J.M.: Open MPI: A Flexible High Per-
formance MPI. In: Proceedings, 6th Annual International Conference on Parallel
Processing and Applied Mathematics. Poznan, Poland (September 2005)

13. Hammond, J.: OSHMPI (06 2016), https://github.com/jeffhammond/oshmpi
14. Hammond, J.R., Ghosh, S., Chapman, B.M.: Implementing OpenSHMEM using

MPI-3 One-sided Communication. In: OpenSHMEM and Related Technologies.
Experiences, Implementations, and Tools, pp. 44–58. Springer (2014)

15. Hao, P., Pophale, S., Shamis, P., Curtis, T., Chapman, B.: Check-Pointing Ap-
proach for Fault Tolerance in OpenSHMEM. In: OpenSHMEM and Related
Technologies. Experiences, Implementations, and Technologies: Second Workshop,
OpenSHMEM 2015, Annapolis, MD, USA, August 4-6, 2015. Revised Selected
Papers. vol. 9397, pp. 36–52. Springer (2015)

16. Hao, P., Shamis, P., Venkata, M.G., Pophale, S., Welch, A., Poole, S., Chapman,
B.: Fault Tolerance for OpenSHMEM. In: Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models. pp. 23:1–
23:3. PGAS ’14 (2014)



14 Rohan Garg, Jérôme Vienne, and Gene Cooperman⋆

17. Hargrove, P., Duell, J.: Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clus-
ters. Journal of Physics Conference Series 46, 494–499 (Sep 2006)

18. High Performance Computing Tools group at the University of Houston, Extreme
Scale Systems Center, Oak Ridge National Laboratory: OpenSHMEM application
programming interface (version 1.3) (accessed June, 2016), http://openshmem.
org/site/sites/default/site_files/OpenSHMEM-1.3.pdf

19. Huang, W., Santhanaraman, G., Jin, H., Gao, Q., Panda, D.: Design and Imple-
mentation of High Performance MVAPICH2: MPI2 over InfiniBand (May 2007)

20. Hursey, J., Squyres, J.M., Mattox, T.I., Lumsdain, A.: The Design and Implemen-
tation of Checkpoint/Restart Process Fault Tolerance for Open MPI. In: Proceed-
ings of the 21st IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS) / 12th IEEE Workshop on Dependable Parallel, Distributed and
Network-Centric Systems. IEEE Computer Society (March 2007)

21. Janakiraman, G., Santos, J., Subhraveti, D., Turner, Y.: Cruz: Application-
Transparent Distributed Checkpoint-Restart on Standard Operating Systems. In:
Dependable Systems and Networks (DSN-05). pp. 260–269 (2005)

22. Jose, J., Hamidouche, K., Zhang, J., Venkatesh, A., Panda, D.: Optimizing Col-
lective Communication in UPC (May 2014)

23. Jose, J., Zhang, J., Venkatesh, A., Potluri, S., Panda, D.K.D.: A Comprehensive
Performance Evaluation of OpenSHMEM Libraries on InfiniBand Clusters. In:
Openshmem and Related Technologies. Experiences, Implementations, and Tools,
pp. 14–28. Springer (2014)

24. Laadan, O., Nieh, J.: Transparent Checkpoint-Restart of Multiple Processes for
Commodity Clusters. In: 2007 USENIX Annual Technical Conference. pp. 323–
336 (2007)

25. Laadan, O., Phung, D., Nieh, J.: Transparent Networked Checkpoint-Restart for
Commodity Clusters. In: 2005 IEEE International Conference on Cluster Comput-
ing. IEEE Press (2005)

26. Laboratory, N.B.C.: MVAPICH2 (06 2016), http://mvapich.cse.ohio-state.

edu/
27. Laboratory, N.B.C.: MVAPICH2-X (06 2016), http://mvapich.cse.ohio-state.

edu/
28. NASA Advanced Supercomputing Division: NAS Parallel Benchmarks. http://

www.nas.nasa.gov/publications/npb.html (accessed Apr, 2016)
29. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,

J.: OpenSHMEM Performance and Potential: A NPB Experimental Study. In:
The 6th Conference on Partitioned Global Address Space Programming Models
(PGAS’12). Citeseer (2012)

30. Sankaran, S., Squyres, J.M., Barrett, B., Sahay, V., Lumsdaine, A., Duell, J.,
Hargrove, P., Roman, E.: The LAM/MPI Checkpoint/Restart Framework: System-
Initiated Checkpointing. International Journal of High Performance Computing
Applications 19(4), 479–493 (2005)

31. Sudakov, O.O., Meshcheriakov, I.S., Boyko, Y.V.: CHPOX: Transparent Check-
pointing System for Linux Clusters. In: IEEE International Workshop on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applica-
tions. pp. 159–164 (2007), software available at http://freshmeat.net/projects/
chpox/

32. TOP500 supercomputer sites (Jun 2016), http://top500.org/list/2016/06/
33. Vienne, J., Chen, J., Wasi-Ur-Rahman, M., Islam, N.S., Subramoni, H., Panda,

D.K.: Performance Analysis and Evaluation of InfiniBand FDR and 40GigE RoCE
on HPC and Cloud Computing Systems. In: Hot Interconnects. pp. 48–55 (2012)



System-level Transparent Checkpointing for OpenSHMEM 15

34. Wong, F.C., Martin, R.P., Arpaci-Dusseau, R.H., Culler, D.E.: Architectural Re-
quirements and Scalability of the NAS Parallel Benchmarks. In: Supercomputing
(1999)

Acknowledgment

We would like to thank both Kapil Arya and Jiajun Cao for many useful dis-
cussions on the internals of DMTCP, and the design of those internal compo-
nents. We also acknowledge the support of the Texas Advanced Computing Cen-
ter (TACC) and the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number
ACI-1053575.


