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Abstract

Geant4 is a very large, highly accurate toolkit for Monte
Carlo simulation of particle-matter interaction. It has been
applied to high-energy physics, cosmic ray modeling, radi-
ation shields, radiation therapy, mine detection, and other
areas. Geant4 is being used to help design some high en-
ergy physics experiments (notably CMS and Atlas) to be
run on the future large hadron collider: the largest parti-
cle collider in the world. The parallelization, ParGeant4,
represents a challenge due to the unique characteristics
of Geant4: (i) complex object-oriented design; (ii) intrin-
sic use of templates and abstract classes to be instantiated
later by the end user; (iii) large program with many devel-
opers; and (iv) frequent releases. The key issue for par-
allelization is not just how to parallelize “correctly” but
also how to parallelize “with minimum effort”. In addition,
the parallelization should make as few assumptions about
the source code as possible, due to the frequent release
schedule of Geant4. We use TOP-C (Task Oriented Par-
allel C/C++) for parallelization and Marshalgen for mar-
shaling/serialization. In some examples on a cluster of 100
nodes yielded a speedup of up to 94.4. The code’s portabil-
ity, scalability and performance are also discussed.

1 Introduction
Geant4 is a toolkit for particle-matter simulation using

modern object-oriented design principles [9]. It contains
about a million lines of C++ code. The development of
Geant4 is coordinated at CERN and includes participation
from more than 100 scientists and from more than ten na-
tional high energy physics laboratories in Europe, Russia,
Japan, Canada and the United States. The design of Geant4
dates from the mid-90s. After the first production release,
the collaboration was formalized in January, 1999 as the
Geant4 Collaboration.

Geant4 has components to model the geometry, the ma-
terials involved, the fundamental particles of interest, the
generation of primary particles for new events, the tracking

of particles through materials and external electromagnetic
fields, the physics processes governing particle interactions,
the response of sensitive detector components, the genera-
tion of event data, the storage of events and tracks, the vi-
sualization of the detector and particle trajectories, and the
capture for subsequent analysis of simulation data at differ-
ent levels of detail and refinement [1, 2].

1.1 Why parallelizing Geant4 is impor-

tant

Geant4 has a community of approximately one hun-
dred developers from high energy physics research centers
around the world including CERN (European Organization
for Nuclear Research), KEK (High-Energy Accelerator Re-
search Organization of Japan), and SLAC (Stanford Linear
Accelerator Center). Geant4 also supports thousands of sci-
entific users around the world. This community also holds
an annual Geant4 workshop. A large simulation application
using Geant4 runs over weeks, months, or years.

Therefore, it is vital to parallelize Geant4 to reduce the
running time of the software and thus shorten the cycle of
experiments. There are several examples of the successful
use of ParGeant4 (this parallelization of Geant4). One ex-
ample is an ESA study [11] using a modified ParGeant4 to
parallelize MULASSIS [13], an application to study radia-
tion shielding. Another example is its use (jointly with A.S.
Howard) in a Geant4 simulation for an experiment to detect
Dark Matter in the universe [10, 17]. Additionally, the par-
allelization of Geant4 has been demonstrated to run on the
Computational Grid [6].

1.2 Why parallelizing Geant4 is difficult

Parallelizing Geant4 is difficult due to the characteristics
associated with a large software package. There are anec-
dotes of at least two previous attempts to parallelize Geant4,
using MPI. Both attempts had failed.

Parallelizing involves two tasks: (i) parallelizing the
computation-intensive run loop inside the Geant4 library,
and (ii) adapting the application data structures to the re-
quirements of the parallel framework. These two tasks cor-



respond to:

1. parallelizing control structures (implemented by TOP-
C [5] in this paper).

2. marshaling objects (implemented by Marshalgen [7, 8]
in this paper).

Included in the parallelization of control structures are the
following three issues: identifying which parts of code can
be executed in parallel, identifying shared data and task-
local data, and resolving the dependencies among parallel
tasks. Marshaling is the conversion of data structures and
C++ objects in memory to buffers, and vice versa. This is
essential for exchanging data via the network in distributed-
memory parallel computing. Marshaling has also been pop-
ularized in Java under the name “serialization”.

The difficulty of parallelizing Geant4 does not lie in the
ability to do the above two tasks, but in the human effort to
do them. The issues may be summarized as follows.

1. Geant4 is a moving target. New versions of Geant4
routines are released every six months.

2. Geant4 is called from an end-user’s main routine, and
many Geant4 routines (e.g. abstract classes, templates,
hook functions, etc.) are instantiated or shadowed by
end-user routines. Any parallelization strategy must
take into account such future end-user code.

3. Geant4 is large. Most users download the Geant4 li-
braries directly. Any parallelization must be compat-
ible with the Geant4 binary libraries that are semi-
yearly updated.

4. Geant4 data structures are complex. They involve
compound, and even recursive data structures. Hand-
coding the marshaling routines would be error-prone.

5. Geant4 makes references to a user-defined data struc-
ture. The user extends Geant4’s G4Hit data structure
in an application-dependent manner. A collection of
G4Hits is generated on the slave, and must then be
passed to the master. The end user must be given sim-
ple instructions for creating marshaled versions of his
or her G4Hits class.

1.3 The ParGeant4 Approach

To maintain compatibility across Geant4 versions, a new
ParRunManager class is distributed in source form. Thus
end users first install the Geant4 binary libraries. Then,
following the instructions of the example/extended/parallel/
directory of the Geant4 distribution, they download TOP-C
(Task Oriented Parallel C/C++), and use it to compile the
ParGeant4 code to create one additional class, ParRunMan-
ager. The end user must then download Marshalgen, and
add annotations (comments) to the Hit class used in their

Geant4 simulation. Those annotations are used by Marshal-
gen to create a MarshaledHit class. They then modify their
“main” routine to create a ParRunManager, and then link
with the Geant4 libraries, and begin their simulation. See
the ParGeant4 web page [15] for further details.

1.4 Novel Features

To minimize the human effort, we use two automatic
tools: TOP-C for parallelizing control structures, and Mar-
shalgen for marshaling. Using these software packages, we
were able to parallelize the Geant4 library with about 200
lines of additional code. Based on this, any user-customized
Geant4 application can be parallelized with a few additional
lines of simple annotations in the declaration files (e.g, .h
files) for the customized data structures.

1.5 Background

ParGeant4 Work on ParGeant4 [15] was begun in
1999 [3, 4], initially using track-level parallelism (a task
simulates a particle track). This was later changed to
event-level parallelism, and all modifications to the origi-
nal source code of Geant4 were eliminated. The issue of
marshaling Geant4 data structures later motivated the devel-
opment of Marshalgen, beginning in 2002 [7, 8]. ParGeant4
also uses the TOP-C (Task Oriented Parallel C/C++) pack-
age [5] for easy parallelization.

Marshalgen and other Marshaling Packages Previous
well-known marshaling systems include rpcgen [18], Corba
IDL [14], and Java serialization [16] as part of the Java RMI
(Remote Method Invocation) facility.

A common problem with most of the above packages
is the difficulty of recursively marshaling pointers to other
objects, and deciding which pointers not to marshal. This
issue was addressed in version 1 of Marshalgen [7]. Ver-
sion 2 of Marshalgen [8] enhanced its capabilities to easily
handle object-oriented issues (templates, polymorphism, in-
heritance and private data members), as needed in Geant4.

1.6 Outline of the Paper

Section 2 describes the Geant4 software package. The
methods for parallelizing Geant4 are explained in Section 3.
The methods for marshaling are described in Section 4. The
performance results are given in section 6.

2 Overview of Geant4
As a toolkit, Geant4 includes only libraries, similarly

to many other scientific subroutine libraries, such as Lin-
PACK [12]. It is up to the application writer to write a main
routine. Inside the main routine, the application writer will
set up the necessary parameters for the simulation such as:
the types of particle to simulate; materials; geometry; elec-
tromagnetic fields; etc. The application writer then makes a
function call to the method of Geant4 that starts the simula-
tion.
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Unlike LinPACK, the Geant4 routines call application-
defined routines to set up the geometries, determine what
experimental data to store when a particle strikes a detector
(G4Hit), etc.

2.1 Structure of a Geant4 Simulation

Before discussing any further about the simulation done
by Geant4, we examine how particle-matter interaction is
modeled within Geant4. An experiment (also denoted as a
run) is a sequence of events. An event is the entrance of an
external particle into the region being modeled. The parti-
cles that trigger events are called the primary particles. The
primary particles come, for example, from an accelerator or
from the cosmic rays that enter the region by incident.

Physical processes are continuous in time and space.
However, the simulation is computed in a discrete manner.
A step is the smallest discrete unit in space for doing a com-
putation. All physical characteristics are assumed to be con-
stant during a step. Based on the status of a particle at the
end of a step, one or more physical processes are called to
calculate the new physical characteristics of the particle at
the next step (location, momentum, energy, etc.).

A primary particle is modeled as moving in steps accord-
ing to one or more physical processes (e.g. electric, mag-
netic, and/or gravitational fields). At each step, a primary
particle has some probability of decaying into one or more
secondary particles (through radioactive decay, interaction
with matter, etc.). These secondary particles may in turn
generate other secondary particles at a later step. There-
fore, a single primary particle with a high enough energy
level may trigger a cascade of interactions and eventually
generate a large number of secondary particles.

A track represents the path traversed by a particle (either
primary or secondary) from the time that it is generated until
it decomposes or hits a detector.

The outcome of the experiment, the collection of hits, is
collected by numerous detectors located inside the collider.
A hit is generated when a particle strikes a detector. De-
pending on the type of the detector, the new hit may contain
various information, such as particle type, energy level, mo-
mentum, etc. The hit is stored in a hit collection associated
with the current event.

To write a simulation for such an experiment, the ap-
plication writer needs to specify the characteristics of the
collider: geometries; materials; electromagnetic fields; the
type and initial momentum and other characteristics of the
primary particles; the number of primary particles to simu-
late; the types and the geometries of the detectors; data to
be stored in a hit; etc. Given these parameters, the Geant4
library will perform the simulation and return the result,
which is the information about the hits.

Optionally, Geant4 can also be used to drive a separate
analysis package. The analysis package will select data to
store in an output file (a histogram). Other parts of the anal-

ysis package are later called to further process and visualize
the data.

2.2 Code Design

Hereafter, we will distinguish between “the Geant4 li-
brary” and “a Geant4 application”. A Geant4 applica-
tion additionally includes the user-defined “main” routine
and any user-defined data structures and functions. This is
linked to the Geant4 library, which contains the simulation
routines.

The routines for a simulation are contained inside the
Geant4 library. However, application writers will usually
define additional internal data structures. For example, the
application writers may define the classes representing hits,
which contain additional information about the hits they
would like to collect. Moreover, the application writers may
add their own hook functions, which are triggered during
various phases of the simulation to collect additional types
of information.

We are particularly interested in the Geant4 classes for
Event and for Hits. Events and hits are the input and the
output of parallel computing tasks and therefore need to be
exchanged over the network. The class hierarchies in the
Event and Hits categories determines how complex the
marshaling task will be when we want to send an event or a
hit collection over the network.

3 Parallelization

3.1 Tool Used: TOP-C

The TOP-C constructs of TOP-C allow the end user to
parallelize a sequential program while modifying relatively
few lines of original source code. This is useful for very
large programs that are likely to pass through frequent ver-
sion changes.

TOP-C uses a master-slave topology. This topology may
map onto a distributed architecture, shared memory archi-
tecture, or some other architectures. A single TOP-C appli-
cation may use a distributed memory model (message-based
for clusters, Globus protocols for Grid) or a shared memory
model (thread-based for a multiprocessor computer), sim-
ply by linking with the appropriate TOP-C library.

A task is a fragment of code that takes a task input and
produces a task output. Each task is given to a slave process
for execution. In the context of ParGeant4, the task input
is an event (generation of a primary particle), and the task
output is a collection of hits.

In TOP-C, the user describes a task using callback func-
tions. These callback functions are passed to TOP-C as
function pointers. In a more object-oriented style, these
callback functions would be thought of as abstract methods
of an abstract class (or Java interface). In other words, the
user presents a task to TOP-C via “an interface” (callback
functions). TOP-C treats the callback functions as opaque
routines and call them whenever it needs to access the input,
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output, or the shared data of the tasks. Consequently, there
are four callback functions:

1. GenerateTaskInput() → taskOutput;

2. DoTask( taskInput ) → taskOutput;

3. CheckTaskResult( taskInput, taskOutput) → TOPCac-
tion; and

4. if ( TOPCaction == UPDATE SHARED DATA ) Up-
dateSharedData( taskInput, taskOutput).

In ParGeant4, TOPCaction is always NO ACTION. Update-
SharedData and actions other than NO ACTION are in-
cluded in the TOP-C model in order to handle non-trivial
parallelism.

For more details on TOP-C, see [5, 6]. An example of
how Geant4 is parallelized using TOP-C is presented in
Section 3.2.

3.2 Implementation Details: Parallelizing

events using TOP-C.

In the Geant4 library, the simulation process is con-
trolled by the class G4RunManager. We imple-
ment the parallel simulation process by extending the
class G4RunManager to a new class ParRunMan-
ager. The sequential computation logic in the method
G4RunManager::DoEventLoop is overridden by the
parallel version in ParRunManager::DoEventLoop.
Each iteration of this main loop corresponds to the simula-
tion of an event.

To perform a parallel computation, the application
writer need only construct and invoke in the main rou-
tine the class ParRunManager instead of the class
G4RunManager. Then, the parallelization of the simu-
lation process is thus transparent to the application writer.
Note that the class ParRunManager can be provided in-
dependently from the Geant4 library. This approach al-
lows the application writers to parallelize a Geant4 appli-
cation while using the unmodified binary distribution of the
Geant4 library.

In order to ensure that the code ParRunMan-
ager closely mirrors the “for loop” structure of
G4RunManager, we use TOP-C’s raw constructs. In ef-
fect, instead of using the TOP-C callback function Gen-
erateTaskInput, the application writer arranges to
submit new tasks by directly calling the TOP-C function
raw submit task input(TOPC=MSG(...)) from
inside the original loop of G4RunManager.

Object marshaling/unmarshaling is handled orthogo-
nally to this parallelization. By design, TOP-C requires no
knowledge about the data structures of the application. It
sees all data as a buffer of specified size in memory. It as-
sumes that it is the user’s responsibility to convert objects
to buffers and vice versa.

3.3 Issues in Parallelization of Geant4

3.3.1 Random number generation

To simulate stochastic physical models, Geant4 uses a ran-
dom number generator. The state (or the seed) of the ran-
dom generator before an event depends on the number of
times the random generator was called during the computa-
tion of the previous event. This number of calling times, un-
fortunately, is hard to predict because the simulation com-
putation is a randomized computation.

The above phenomenon of random generator seed cre-
ates a “virtual” dependency among events. The computa-
tion of the i

th event (where i is an arbitrary natural number)
depends on the random seed resulted from the computation
of the (i − 1)th event. This causes a problem in the par-
allelization of Geant4: the results of events computed in
parallel may differ from those computed sequentially.

In order to be able to compute two events (for example,
the (i − 1)th and i

th events) in parallel, and still produce
output identical to that of the sequential version, one must
be able to predict the random seed after the (i − 1)th event
without waiting for the computation of (i − 1)th event to
complete. This prediction is possible in theory. However,
there is no general algorithm for such prediction in prac-
tice. In addition, some random generators may be provided
as a “black-box” in the format of an external binary library,
making the access to the logic of the random generator im-
possible.

Nevertheless, a simple strategy yields high quality sta-
tistical results for the parallelized version. In addition to
the random number generator of the sequential application,
an independent random number generator is included in the
parallel version. We use the “parallel random number gen-
erator” to set the random seed prior to each event to a ran-
dom number. The random seed is generated on the mas-
ter and passed to the slave as part of the task input for that
event. On the slave, this provides a seed for the standard
“sequential random number generator”. The seeds are gen-
erated by using an independent random generator from the
one used by the sequential Geant4 application. This ap-
proach of parallelization produces outputs which are not
identical to the output of the sequential version. However,
from the statistical point of view, the data produced by the
sequential version and the randomized seeds of the parallel
version should have identical statistical characteristics.

The parallel use of random seeds has the further advan-
tage that the parallel code can produce identical results re-
gardless of whether there is one slave process or more. This
is the case because the events of ParGeant4 are produced
according to a predetermined sequence depending only on
the seed for the “sequential random generator” on the mas-
ter. Given fixed initial seeds for the sequential and parallel
random number generators, these two seeds will uniquely
determine the remainder of the parallel computation, inde-
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pendently of the number of slave processes and which pro-
cess executes on which slave.

3.3.2 Event-Level Parallelism vs. Track-Level Paral-
lelism

In some applications, such as air showers, a single event
(e.g. cosmic ray) may give rise to very many secondary
tracks. In such a case, a Geant4 simulation will often sim-
ulate only a single event. In such a case, track-level paral-
lelism is preferred to event-level parallelism.

In such a situation, it is possible to get around this prob-
lem. One can simulate the single event until multiple sec-
ondary particles are produced. The secondary particles can
then be considered as multiple events, and fed back into
Geant4, to simulate using event-level parallelism. This has
not been implemented.

3.3.3 Distributed Memory vs. Shared Memory Paral-
lelism

Geant4 is parallelized using the distributed memory model.
Each task is executed on a separate node with its own mem-
ory. Data is exchanged via network messages.

Shared memory parallelization is attractive for those
simulations with short events and large hit data data struc-
tures (large ratio of communication to computation). TOP-
C (version 2.5) provides an option for aggregation of multi-
ple tasks into a single message. This can be used to alleviate
the startup overhead of sending a network message.

Shared-memory parallelization is difficult due to the de-
sign of Geant4. Inside the Geant4 library, there is a global
navigation module that keeps track of which secondary par-
ticle has been generated and has been simulated. For effi-
ciency reason, this module is designed as a singleton (one
instance for one memory space). If two tasks shares the
same memory space, they will share the same global navi-
gation module. The navigation module has its own internal
states, so the sharing between parallel tasks will incur race
conditions.

In order to do shared memory parallelization, the design
of the Geant4 library must change the global navigation
module from a singleton to a multiple-instantiable object,
or introduce a concurrency mechanism (such as locks) on
the module. Both approaches will result in an efficiency
sacrifice for all Geant4 sequential applications. The benefit
of being able to do shared memory parallel computing may
not be large enough for such a sacrifice.

4 Marshaling and Unmarshaling of Complex
Objects

4.1 Issue: Why we need Automatic Ob-

ject Marshaling

The distributed memory model ofparallelism is chosen
for Geant4, as explained in Section 3.3.3. The current ver-
sion of Marshalgen primarily supports a homogeoneous ar-

chitecture, corresponding to most computing clusters. Mar-
shalgen could easily be extended to support heterogeneous,
at the cost of additional overhead.

One issue in doing distributed parallel computing is the
ability to send data over the network. One should be able to
marshal objects to a buffer and then unmarshal the buffer
to reconstruct the same objects at a remote machine. The
terminology “marshal” and “unmarshal” are also known as
“serialize”and “deserialize” in Java. In C++, there is no
such serialization mechanism. Therefore, in MPI or TOP-
C, the user has to write marshaling code manually.

With a complex class hierarchy as in Geant4, writ-
ing marshaling code for all classes manually would be
tedious. Moreover, since application writers usually de-
fine their own data structures and have the Geant4 library
use them instead of the default data structures, writing
marshaling/unmarshaling code for those customized data
structures is an important issue. The application writ-
ers have to make sure that their marshaling/unmarshaling
code of the customized classes is compatible with the
marshaling/unmarshaling code of related classes in the
Geant4 library. They may have to update their marshal-
ing/unmarshaling code manually whenever the Geant4 li-
brary is upgraded. These tasks require huge effort in writ-
ing, testing and maintaining the marshaling/unmarshaling
routines and the parallelized application.

Thus, the complex class hierarchy in such a large soft-
ware package as Geant4 necessitates an automatic tool for
generating marshaling/unmarshaling code. The next section
is the discussion of such a tool: Marshalgen.

4.2 Tool Used : Marshalgen

Marshalgen is a semi-automatic tool for generating mar-
shaling/unmarshaling code for C++ classes. The applica-
tion writers use annotations to specify which data to be
marshaled and how the data should be marshaled. These
annotations should be next to the declaration of the data
structures in .h files. Then, the application programmers run
the annotated .h files through the Marshalgen preprocessor
to generate marshaling/unmarshaling classes and methods,
along with their declarations.

Marshalgen allows the application writers to generate
marshaling/unmarshaling code without having to access the
original source code (.cpp or .cc files). The annotations
are added as comments, leaving the original program un-
changed. Therefore, there is no need to access the original
code to recompile the program. Only the declarations (.h
files) are needed. This is useful for generating marshaling
code for data structures from external libraries. This is be-
cause most libraries (include the Geant4 library) are usu-
ally distributed in pre-compiled binary code together with
.h files.

The marshaling/unmarshaling code for a class Foo is
generated as a class MarshaledFoo. The marshaling
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buffer for an object of type Foo is constructed by calling
the constructor of the class MarshaledFoo with the tar-
get object as an argument. The class MarshaledFoo then
provides necessary methods to access the constructed mar-
shaling buffer. Unmarshaling is done in the following man-
ner: the constructor of the class MarshalFoo is first called
with the target buffer as an argument, then an object of type
Foo is constructed from the buffer by making a call to the
method MarshaledFoo::unmarshal.

Some of the possible Marshalgen annotations are listed
in Table 1. For more details on Marshalgen, see [7, 8].

Default Annotations Explanations
//MSH: primitive For int, etc.; built-in marshaling
//MSH: primitive ptr For int *, etc.; built-in marshal.
//MSH: predefined For prev. annotated class
//MSH: predefined ptr Ptr. to prev. annotated class
//MSH: array Array of above type of elt.
//MSH: ptr as array Ptr. to such an array

Table 1. Optional Annotations: one of five de-
fault cases, determined by parsing data types

4.3 An example of Marshalgen annota-

tions

Figure 1 shows an example of using Marshalgen annota-
tions to generate marshaling routine for the class Foo.

//MSH_BEGIN
class Foo
{
public:
int count;
double *HC; /* MSH: ptr_as_array
[elementType: double]
[elementCount: { $ELE_COUNT = $THIS->count; }]
[elementGet: {$ELEMENT= $THIS->HC[$ELE_INDEX];}]
[elementSet: {$THIS->HC[$ELE_INDEX]= $ELEMENT;}]

*/
}
//MSH_END

Figure 1. Marshalgen annotations for a sim-
ple class

The declaration of the struct or class to be marshaled
must be surrounded by //MSH BEGIN and //MSH END.
The annotation right after the declaration of a data field
describes how Marshalgen should marshal the data field.
All the annotations are in the format of /* MSH: annota-
tion type [options] */.

In the example Figure 1, the annotation /* MSH:
ptr as array ... */ tells Marshalgen that the data

field double *HC is a pointer to an array, and the infor-
mation necessary to marshal the data field is specified in the
following options.

The option [elementType: double] tells Mar-
shalgen that each element of the array has the double type.

The option [elementCount: { $ELE COUNT =
$THIS->count; } ] specifies how Marshalgen can ob-
tain the size of the array in the number of elements (presum-
ably the programmer maintains the correct size of the array
HC in the data field count). The C++ code inside {...}
is the code to be executed to obtain the array size. The array
size should be assigned to $ELE COUNT, a variable used
by Marshalgen. The variable $THIS refers to the object to
be marshaled. We would have liked to use “this” instead
of “$THIS”. However, since the marshaling/unmarshaling
routines are put in a separate class, “this” would not refer
to the object to be marshaled but to the instance of the class
containing the marshaling/unmarshaling routines.

Similarly, the C++ code inside {...} of the options
elementGet and elementSet specify how Marshalgen
can get access to the marshaled object. In the option ele-
mentGet, $ELEMENT refers to the object to be marshaled.
In the option elementSet, $ELEMENT refers to the ob-
ject that has been reconstructed. $ELEMENT is automati-
cally assigned by Marshalgen. $ELE INDEX refers to the
index of the object in the array. The variable $ELE INDEX
is automatically assigned by Marshalgen.

The options elementGet and elementSet are
needed because sometimes the data field is not directly ac-
cessible from outside the class: the data field may be de-
clared as private or protected. Since we are not al-
lowed to change the original code of the class, the marshal-
ing/unmarshaling routines have to reside outside the class.
As a consequence, the user has to provide Marshalgen with
necessary code to access the data fields declared as pri-
vate or protected.

An example of the annotations used for marshalling a
collection of Geant4 Hits follows in Figure 2. Each Geant4
application that declares a new type of hit also provides an-
notations.

5 Ease of Parallelization: the experience of
DMX

DMX (Dark Matter Experiment) [10, 17] is contained
in the Geant4 distribution under examples/advanced/
underground_physics. It is a larger application, con-
taining 9,000 lines of code, in addition to the Geant4 toolkit.

In the parallelization, we wrote a new, derived class, Par-
RunManager that is used for all Geant4 applications, not
just DMX. That file contains about 200 lines of code, of
which 137 are actual code, and the rest is comments. Of the
137 lines of code, 61 lines were copied verbatim from the
original model in RunManager. This leaves 76 lines of new
code to implement the parallelization. This derived class,
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//MSH_BEGIN
class G4HCofThisEvent
{ ...

// data members
private:

G4std::vector<G4VHitsCollection*> *HC;
/* MSH: ptr_as_array

[elementType: G4VHitsCollection*]
[elementCount: { $ELE_COUNT =

$THIS->GetNumberOfCollections(); }]
[elementGet: { $ELEMENT =

$THIS->GetHC($ELE_INDEX); }]
[elementSet: { $THIS->

AddHitsCollection($ELE_INDEX, $ELEMENT); }]
*/
// member methods

public:
inline G4VHitsCollection* GetHC(G4int i)

{ return (*HC)[i]; }
inline G4int GetNumberOfCollections() { ... }
void AddHitsCollection(G4int HCID,

G4VHitsCollection * aHC);
...

}
//MSH_END

Figure 2. G4HCofThisEvent.hh (annotation
for a Geant4 class in slanted characters)

ParRunManager, can be reused verbatim in any Geant4 ap-
plication.

For the marshaling, we only needed to add application-
specific annotations to existing “.h” files. The actual mar-
shaling code is automatically generated from these anno-
tations. We required 98 lines of annotation to marshal
six classes: DMXPmtHit (2 fields, 8 lines), DXMScintHit
(5 fields, 20 lines), G4HCofThisEvent (1 field, 17 lines),
G4String (1 field, 17 lines), G4VHitsCollection (3 fields,
10 lines), and G4THitsCollection (2 fields, 26 lines).

The first two classes are required for DMX, a particu-
lar application of Geant4. The marshalling of the next two
classes can be used verbatim in any Geant4 application. The
final two classes can be reused almost verbatim, except that
one case dispatches according to whether a hit is of type
DMXPmtHit or DMXScintHit. In total, 15 fields are anno-
tated.

Of the 98 lines, some of the fields requiring addi-
tional lines of annotation are the private fields. In this
case, the annotation must specify the accessor and mod-
ifier methods to use for marshaling. In another case,
one has G4VHitsCollection (an abstract class) as a par-
ent class of G4THitsCollection (a template class). The
template G4THitsCollection<T> can be instantiated with
DMXPmtHit or DMXScintHit for T. The annotation must
specify at compile time how to marshal both template in-
stantiations. From this, Marshalgen must construct a tem-
plate marshaling class, MarshalG4THitsCollection<T>. In

order for this marshaling class to correctly function, we
must annotate how to detect at run-time which template in-
stantiation is present, and to marshal accordingly.

6 Performance
The performance at run-time will be almost the same as

using MPI. This is because the tools (TOP-C, Marshalgen)
used in parallelizing Geant4 incur very little overhead at
run-time.

1. TOP-C is essentially an MPI library with a higher-level
abstraction. The extra overhead incurred by TOP-C
should be very small.

2. Marshalgen acts as a source-to-source preprocessor.
The overhead incurred at run-time will be only:
(i) constructing of marshaling buffer for objects by
the marshaling code, and (ii) parsing buffers to re-
construct objects by the unmarshaling code.

We measured the above overhead at run-time for mar-
shaling and unmarshaling process. It took 0.118 s to mar-
shal an object of class G4HCofThisEvent to a buffer of
2,297,504 bytes on a SunBlade 100 machine. This is ap-
proximately 18 MB/second. Approximately the same rate
is achieved by the unmarshaling process.

The communication overhead, although almost the same
as MPI, does incur some cost. Therefore, the speedup de-
pends on the granularity of each particular Geant4 applica-
tion (see Figure 3). With 50 processes, the master is ob-
served to use approximately 30% of the CPU time. With
100 processes, the master is observed to use approximately
50% of the CPU time.

Application # of Running Speedup # tasks
name CPUs time (s) aggreg.
DMX 50 1106 49.3 1
DMX 100 578 94.4 1
Example N02 1 15,213 1 1
Example N02 50 555 27.4 1
Example N02 50 374 39.0 10
Example N02 50 441 34.5 50
Example N02 100 464 32.8 1
Example N02 100 304 48.6 10
Example N02 100 257 59.3 50

Figure 3. The speedup of parallelized Geant4
applications. (DMX = Dark Matter Experi-
ment)

Figure 3 shows the speedup obtained when we ran
the sequential and parallel versions of two Geant4 ap-
plications: DMX [10] and N02. DMX can be
found in the examples/advanced/underground_
physicsdirectory of the Geant4 distribution. N02
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can be found in examples/novice/N02. The simulations
used Geant4 version 4.6.2 and gcc-2.95. They were run
on dual processor Pentium machines with 1 GB of RAM
running at 1.3 GHz on the lxplus cluster at CERN. The ma-
chines were running RedHat 7.3. The machines were lightly
loaded. The running time in each case excludes approxi-
mately two minutes that Geant4 uses to load its libraries and
initialize its data structures on all master and slave nodes.

Number of Running time (s) Running time (s)
aggregated tasks for 50 CPUs for 100 CPUs

1 555 464
2 410 322
5 385 239

10 374 304
25 393 238
50 454 303

Figure 4. Number of aggregated tasks and
running time for ParN02 for 50,000 events
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