
Practical Task-Oriented Parallelism for Gaussian

Elimination in Distributed Memory

Gene Cooperman1

College of Computer Science

Northeastern University

Boston, MA 02115

gene@ccs.neu.edu

Abstract

This paper discusses a methodology for easily and efficiently paralleliz-
ing sequential algorithms in linear algebra using cost-effective networks of
workstations, where the algorithm lends itself to parallelism. A particular
target architecture of interest is the academic student laboratory, which
typically contains many networked computers that lay idle at night. A
case is made for why a task-oriented approach lends itself to the twin
goals of programming ease and run-time efficiency. The approach is then
described in the context of TOP-C (Task-Oriented Parallel C), an exam-
ple of a system to support task-oriented parallelism. In this system, the
programmer is relieved of lower level concerns such as latency, bandwidth,
and message passing protocols, so as to better concentrate on higher level
issues of task granularity and reduction of communication traffic. Gaus-
sian elimination is chosen as the main example, since this algorithm is
both widely used and sufficiently interesting to require non-trivial forms
of parallelization for the sake of efficiency.

1 Introduction

The arrival of cheap, networked workstations and personal computers has made
distributed parallelism an attractive opportunity for speeding up calculations.
In particular, academic environments typically include student laboratories with
such facilities often lying idle at night. Nevertheless, many of the available
software tools for parallelization are either large or have a significant learning
curve or both. This article describes a particularly simple form of parallelism
that is easily adaptable to many tasks in linear algebra. We take Gaussian
elimination as our example in this article.

1Partially supported by NSF Grant CCR-9509783.

1

While there has been a great deal of work on parallel Gaussian elimination
for more specialized machines (see [20] for a good, if somewhat older survey),
there has been relatively little work for general, distributed memory architec-
tures, such as a NOW (Network of Workstations). No doubt, this is due to the
relative inefficiency of typical NOW’s. (It should be noted that the work on
ScaLAPACK [6, 5] runs on top of both MPI and PVM and hence does apply to
NOW’s, although it is also meant to target more specialized, high-performance
machines.) Nevertheless, the price of such a configuration is zero if one already
has access for running overnight jobs remotely on laboratory machines. This
article proposes an easy methodology for parallelizing linear algebra routines,
taking Gaussian elimination as our main example. This will sufficiently illus-
trate the principles so that the reader can easily apply the same principles to
other tasks in linear algebra.

The parallel tool to be used here is TOP-C [9] (Task-Oriented Parallel C).
(Information on obtaining the distribution is provided at the end of this ar-
ticle.) Task oriented parallelism is a term that has gained usage in order to
contrast it to data oriented parallelism. Data oriented parallelism is a style of
parallelism in which opportunities for parallelism are identified typically within
a loop construct in the code. The sequential code for iterating the loop is then
converted to parallel code in which iterations of the loop are assigned to distinct
processors. We discuss these ideas in light of a distributed architecture, where
communication among processors takes place through messages, since this cor-
responds best to a model that takes advantage of student laboratories for “free”
CPU cycles. It should be noted that data oriented parallelism is also frequently
implemented on shared memory computers (formally known as a SMP, or Sym-
metric MultiProcessor) and on vector processors. As we shall see, the same
code that runs in a distributed environment using a library from TOP-C can
run on a SMP with no change in code by swapping in a second TOP-C library
designed for that purpose. Further, TOP-C includes a third, sequential library
that makes the use of C debugging tools, such as dbx, particularly easy.

A good example of data parallelism might be code that implements an in-
ner product,

∑n

i=1
uivi. If p processors are available, then up to dn/pe of the

products and the sum of those dn/pe products can all be executed on a single
processor. The dn/pe subtotals can then be combined to find the answer.

One can arrange the partial sums to be computed according to a binary tree
with p leaf nodes — each leaf node being identified with a distinct processor.
The dn/pe subtotals can then executed in dlog

2
dn/pee steps, the depth of the

tree, in the obvious manner. (The binary tree is chosen to be as close to balanced
as possible.)

Data oriented parallelism has been attractive because it is relatively easy
for a compiler to recognize the opportunities for parallelism. With few or no
hints from the program writer, the compiler can still convert many of the loops
into parallel routines. This approach tends to result in a relatively fine gran-
ularity of parallelism. On vector processors and SMP processors, this type of

2

parallelization can be very efficient. On a distributed memory architecture, a
successful data parallelization must overcome the message latency. There are
predictions that the overall communication bandwidth for a message (including
amortized delays due to latency) will be less than the bandwidth to memory
in the future. However, it is still likely to be many years before such network
become economical for student laboratories.

Task oriented parallelism is a style of parallelism in which the program writer
specifies opportunities for parallelism by executing multiple tasks or subroutines
on distinct processors. This type of parallelism requires more effort from the
program writer. However, it also allows the program writer to consider the
structure of his or her algorithm to obtain further opportunities for parallelism.
Further, this approach tends to yield a coarser granularity that makes it easier
to overcome the message latency of a distributed memory processor.

2 TOP-C

TOP-C [9] is a system that provides a C library for easily parallelizing code.
There are also related software packages written for LISP [8] and GAP [7]
(Groups, Algorithms, and Programming) that apply the same methodology.
TOP-C and its relatives have already been used successfully in several applica-
tions of discrete computational algebra [10, 11, 12, 13]. TOP-C functions both
in a distributed and in a shared memory architecture. TOP-C also includes
a shared memory library that adds the ability for processors to communicate
directly through a common memory location. The use of that additional capa-
bility is not discussed here, although code designed for TOP-C under distributed
memory will work without change on shared memory.

For a tutorial in programming TOP-C, it is recommended to examine [9] or
to obtain the distribution, itself. This article describes only enough of the model
to describe the task-oriented approach. There are many parallel tools that use a
task-oriented or object-oriented approach (a selection includes [2, 3, 4, 14, 16]),
and the ideas described here could be ported to many of those architectures,
too.

The TOP-C model takes place in a master-slave architecture. The processor
on which the jobs is begun is the master processor, and all other processors
are slave processors. TOP-C runs on top of MPI [17, 19] (Message Passing
Interface). A subset implementation of MPI is included with the TOP-C dis-
tribution. The programmer writes a single program, which is executed on all
processors. (This is often called SPMD, or Single Program Multiple Data.) As
with most implementations of MPI, this one uses the UNIX utility rsh to spawn
processes on each slave processor, although other mechanisms for starting slave
processes are also possible.

The TOP-C model can best be understood through two concepts: the task
and the environment. Informally, the environment can be thought of as a glob-

3

ally shared memory. We shall later see that this is only approximately true, since
there is a question of when the environment is updated on each processor. The
task is a subroutine that takes as input a task input (sometimes also referred to
as the task), and returns a task result. It is up to the programmer to determine,
based on the algorithm, what is a suitable task and environment. The program-
mer will then write the routines get task(), do task(), get task result()

and update environment(). These routines will implicitly define both the task
and the environment.

Graphically, one can describe the TOP-C model through the following model.

MASTER SLAVE

�
�

�
�get task()

�
�

�
�do task(task)

�
�

�
�get task result(result, task)

�
�

�
�update environment(result, task)

PPPPPPPPPq

task

�
�

�
�

��+

result

�
�

�
��3

(if action == REDO)

PPPPPPPPq

(if action == UPDATE)

Figure 1: (This diagram appeared in [9] and is copyright by IEEE.)

If one ignores the upward arrow of the diagram, it is clear how this can be
viewed as a form of trivial parallelism. Even as a tool for trivial parallelism,
TOP-C can ease the programming chore, as illustrated by the following program
for matrix multiplication. It should be understood that under TOP-C, the
program below will be run on all processes, and the master slave() routine

4

while (NOTASK <> (task = get_task())) do [on master]

redo:

result = do_task(task); [on slave]

action = get_task_result(result, task); [on master]

switch (action)

case NO_ACTION: /* do nothing */;

case UPDATE: update_environment(result, task); [on master & slave]

case REDO: goto redo;

case CONTINUATION: ;

will arrange to call the appropriate user-defined routines, according to whether
the process is the master process or the slave process.

#define DIM 100

int mat1[DIM][DIM], mat2[DIM][DIM], mat_prod[DIM][DIM];

void *get_task() {

static int row = -1; /* row remembered betw. calls */

row++;

if (row >= DIM) return NOTASK;

return MSG(&row, sizeof(row)); }

void *do_task(void *row_ptr) {

int i, j, row = *(int *)row_ptr;

int result[DIM];

for (i = 0; i < DIM; i++) {

result[i] = 0;

for (j = 0; j < DIM; j++)

result[i] += mat1[row][j] * mat2[j][i]; }

return MSG(result, DIM*sizeof(*result)); }

void *get_task_result(int *result, void *row_ptr) {

int i, row = *(int *)row_ptr;

for (i = 0; i < DIM; i++)

mat_prod[row][i] = result[i];

return NO_ACTION; }

int main() {

read_matrices(mat1, mat2); /* into all processors */

master_slave(get_task, do_task, get_task_result, NULL);

if (is_master()) print_matrix(mat_prod); }

In order to take advantage of non-trivial parallelism, one must bring into
play a global environment, shared across processors. The environment need
not be explicitly declared by the user. Instead, the user defines a routine,
update environment(), and any non-local data structures modified by that

5

routine are, by definition, in the environment. The routine, update environment(),
is invoked on all processors whenever the user routine, get task result(), re-
turns the action, UPDATE. The environment is typically initialized identically
on all processors before the first call to master slave(). It is the user’s re-
sponsibility to insure that the environment is never modified by any routine
on any processor, unless that routine was called by update environment().
(More generally, a routine modifying the environment must be a descendant
of update environment() in the call graph.) A detailed example using the
environment is contained in section 3.3.

Thus, the basic model of TOP-C is simple, and yet, as we shall see, sur-
prisingly powerful. There are enhancements of TOP-C that are not discussed
here. The most important of these is a utility, up to date(), that can be called
within get task result() to check if the environment had changed between
the time when the task was originally generated and the time when the result
of the task was delivered. This makes possible a standard idiom by which users
can define get task result().

int get_task_result(void *result, void *task)

{ if (result == NULL) return NO_ACTION;

if (! is_up_to_date()) return REDO;

else return UPDATE; }

Two other enhancements are the continuation, which allows an arbitrary
conversation between the master and slave before a result is returned by the
slave, and raw master slave(), which is useful for parallelizing sequential code
in which the task is generated inside several nested loops.

3 Gaussian elimination

We first consider a simple, sequential implementation of Gaussian elimination
that we wish to parallelize. Naturally, there are many sophisticated optimiza-
tions that could be applied both to the sequential and parallel versions. We
omit such considerations for simplicity of exposition.

In particular, we even ignore issues of partial pivoting and numerical sta-
bility. To avoid partial pivoting, we may assume that the matrix of interest
is column-wise diagonally dominant (|ajj | >

∑
i6=j |aij |), and note that Gaus-

sian elimination preserves such a property. Such matrices are common in PDE
solvers. Even so, the fact that slaves must operate in parallel may lead to effects
similar to partial pivoting. If the principles of parallelization are clear, then it
will also be clear to the reader how to add appropriate partial pivoting to the
model, afterwards.

int n; /* n = matrix dimension */

float *matrix; /* matrix cast to type: float matrix[n][n] */

6

int main()

{ int row;

for (row = 0; row < n; row++)

for (i = row + 1; i < n; i++)

reduce_row(matrix, i, row, row); /* row already reduced */

}

void reduce_row(float *matrix, int row_to_red, int row, int pivot)

{ int j;

float scalar = matrix[row_to_red*n+pivot] / matrix[row*n+pivot];

float *row1 = &(matrix[row_to_red*n]);

float *row2 = &(matrix[row*n]);

row1[pivot] = 0.0;

for (j = pivot+1; j < n; j++)

row1[j] = row1[j] - scalar * row2[j];

}

3.1 Natural formulation

We now consider an implementation of Gaussian elimination based on TOP-C.
Consider a n × n matrix. The idea for parallelization is developed in a natural
manner. One would like to consider a row operation (v̄ − aū, for scalar a and
row vectors ū and v̄) as the basic task. A master would then generate such
tasks for each slave, and the environment, or current status of the Gaussian
elimination would be known only to the master. However, this approach does
not provide sufficiently coarse granularity. A single row operation typically
takes very little time, and the computation time would be dominated by the
associated communication time.

3.2 Coarser granularity

So, we consider a formulation of Gaussian elimination with larger tasks (coarser
granularity). We imagine that the matrix is divided into b bands, consisting of
n/b adjacent, horizontal rows. (For simplicity of exposition, we assume that
b divides n, although this is clearly not a requirement of the method.) Given
p processors, we further assume that n/b � 1 and b � p. (The term, band, is
used here only in its English meaning, and should not be confused with its use
in banded matrices.)

This approach provides a coarser granularity. But it also requires larger
messages. If one wishes to do row operations involving two bands, one must
send 2bn numbers. While the coarser granularity may solve the problem of
message latency, the communication bandwidth becomes a problem.

7

3.3 Lowering communication bandwidth: the environment

In order to reduce communication bandwidth, one must also make use of the
TOP-C environment. The obvious candidate for the environment is the current
state of the n × n matrix, and we do make that choice. We take a greedy ap-
proach, and so we define the basic task to be to reduce the band of row vectors
to the maximum extent possible in the current environment. The greedy ap-
proach has clear benefits if one assumes that the communication time (including
any latency) of a message dominates the time for the computation.

We take the approach of blocked Gaussian elimination. We view the matrix
as a b × b matrix of n/b × n/b blocks. We define the i-th band to be reduced if
blocks (i, 1) through (i, i − 1) are all zero and block (i, i) is in upper triangular
form. Our goal is for all b bands to be reduced. The master process will find
the next band that is not reduced and send it as the task input to a slave a be
reduced. The slave process will carry out as much reduction as possible, and
then return the result. If the band was further reduced by the slave, then the
master process will call update environment() and re-distribute that band to
all processors. In order to assist in the bookkeeping, we include a global integer,
first unred band, and a vector, first unred col, in the environment.

We will define the task input to be an integer that indicates the band that
we will attempt to reduce for this task. We defer the definition of get task()

and state only that it will return an integer indicating a particular band. We
assume global variables, n and b for the dimension and number of bands. For
simplicity of exposition, we assume that b divides n. The routine do task()

can be defined as follows:

/* Compile with mas-slave.h and linking with TOP-C library */

int n, b; /* n = matrix dimension; b = number of bands */

float *matrix; /* matrix cast to type: float matrix[n][n] */

int band_size = (n+b-1)/b; /* For b | n, this is just n/b */

/* Columns 0 up to first_unred_col[b] of band b are 0 */

int first_unred_col[b];

int first_unred_band = 0; /* Done when first_unred_band = b */

int band_is_busy[b];

struct band {

int band_no;

int first_unred_band;

int first_unred_col;

float band[band_size*n];

};

void *do_task(void *band_ptr) /* 0 <= band_no <= b - 1 */

8

{ int band_no = *(int *)band_ptr;

int row_start = band_no * band_size;

int row_end = (band_no + 1) * band_size;

int row, i;

int pivot = max(first_unred_col[max(first_unred_band-1,0)], 0);

static struct band result;

/* This will always be true: get_task() satisfied this condition */

if (first_unred_col[band_no] <= first_unred_col[max(first_unred_band-1,0)]) {

for (row = max(first_unred_col[band_no], 0);

row < first_unred_band * band_size; row++)

for (i = row_start; i < row_end; i++)

reduce_row(matrix, i, row, row);

/* This is non-zero block at or below first unreduced,

on-diagonal block; Upper triangularize it in place */

for (row = row_start; row < row_end; row++, pivot++)

for (i = row + 1; i < row_end; i++)

reduce_row(matrix, i, row, pivot);

if (band_no == first_unred_band) first_unred_band++;

first_unred_col[band_no] = first_unred_band * band_size; }

result.band_no = band_no;

result.first_unred_band = first_unred_band;

result.first_unred_col = first_unred_col[band_no];

for (i = 0; i < n * band_size; i++) /* copy band */

result.band[i] = matrix[band_no*band_size*n + i];

return MSG(&result, sizeof(result));

}

int get_task_result(void *res_ptr, void *band_ptr)

{ return UPDATE;

}

void update_environment(void *res_ptr, void *band_ptr)

{ struct band *result_ptr = res_ptr;

float *mat_ptr = result_ptr->band;

int i, band_no = *(int *)band_ptr;

if (result_ptr->first_unred_band > first_unred_band)

first_unred_band = result_ptr->first_unred_band;

first_unred_col[result_ptr->band_no]

= result_ptr->first_unred_col;

for (i = band_no*band_size*n; i < (band_no+1)*band_size*n; i++)

matrix[i] = *(mat_ptr++);

band_is_busy[band_no] = 0; /* (Only master needs this) */

}

9

int main()

{ int i;

n = 100; /* set dimension */

b = 20; /* number of bands */

band_size = (n+b-1)/b; /* For b | n, this is just n/b */

for (i = 0; i < b; i++) {

/* Columns 0 until first_unred_col[i] of band i are 0 cols and

next block is upper triangularized; -1 means not triangularized */

first_unred_col[i] = -1;

band_is_busy[i] = 0; }

matrix = malloc(n*n*sizeof(*matrix));

master_slave(get_task, do_task, get_task_result,

update_environment);

}

3.4 Load balancing

Load balancing is a typical problem in any algorithm for Gaussian elimination.
In our software architecture, load balancing reduces to the control strategy used
by the get task() on the master process to decide which band to send out for
reduction to the next available slave.

In the area of control strategy, there is room for experimentation. However,
we suggest a control strategy which we have found successful. In TOP-C, it is
easy to inspect the detailed load balancing, since setting a single flag causes a
trace to be displayed for all messages, both to and from the master process.

We are assuming that the communication time dominates the computation
time for each task. We still see an overall speedup, since there can be an overlap
of communication by some processors with communication by other processors.
(In section 3.5, techniques are discussed for further improving this overlap of
communication and computation.) Hence, the bottleneck for parallelizing Gaus-
sian elimination tends to be those bands that have already been reduced and
broadcast to the slave processors. Accordingly, we choose a control strategy in
which get task() sends out to the next available slave the first band that is
not yet reduced and that is not currently being worked on by another slave.

Hence, we have the following pseudo-code for get task().

/* Copyright (c) 1997, Gene Cooperman; free use is granted */

void *get_task() {

static int i;

if (first_unred_band >= b) return NOTASK;

for (i = first_unred_band; i < b ; i++)

if (first_unred_col[i] < first_unred_col[first_unred_band - 1]

&& band_is_busy[i] == 0) {

10

band_is_busy[i] = 1;

return MSG(&i, sizeof(i)); } }

Note that this strategy provides work for additional slaves even while the
first slave is working on the first band. If one recalls that first_unred_col[i]
is initially -1 for all i and if one reviews the logic of do_task(), one sees that
initially each slave will be upper triangularizing the first block in a distinct
band. Such advance “pre-triangularization” of a block, B, in the lower left
triangle saves half the work that will be required later when one will have
upper triangularized the on-diagonal block above B and will need to “zero out”
block B.

3.5 Fine tuning

The success of this methodology depends on having tasks of sufficient granular-
ity. There are several considerations by which one can overcome problems of
too fine a granularity of parallelism. First of all, one may choose to have fewer
bands, each of larger band size. However, one is restricted by the requirement
that the number of bands should be significantly larger than the number of
processors, so that processors are not idle for most of the computation.

A second technique is to set up more than one slave process on each slave
processor. Thus, one is better able to overlap computation and communication,
since while a slave process is communicating with the master, a second slave
process on the same processor may be computing at the same time.

This type of overlapping of computation and communication is sometimes
known as latency hiding, since the processors remain occupied with useful com-
putation during the communication phase. However, one should be warned that
because most operating systems were designed primarily with sequential com-
putation in mind, the operating systems may allow less than the full amount of
such overlapped computation and communication. Nevertheless, there should
be a tendency for this situation to improve with future operating system up-
grades.

4 Comments on efficiency

See [15, Chapter 6] for an excellent introduction to practical issues of efficient,
parallel matrix computations. For one of the most efficient parallel implemen-
tations of linear algebra, see the ScaLAPACK [5, 6, 21] distribution, which is
part of the LAPACK [1] series. The currently most efficient implementations of
Gaussian elimination do not send entire bands within a single message. As is
well known, the decomposition of the matrix into blocks and the order in which
the block matrix multiplications are performed allows one to lower the com-
munication overhead and improve load balancing. Such considerations are also

11

important in improving the cache performance, even in sequential implementa-
tions [18]. The purpose of this article is to describe a general methodology of
parallelization, which can apply to novel problems in linear algebra, while yield-
ing good (although less than optimal) performance with relatively little effort
on the part of the programmer.

One of the advantages of the current methodology, as compared to more
standard methods, is that dynamic load balancing is accomplished implicity.
There are no barriers and no critical sections of code. Typically, no processors
are starved for work, except for a short time at the end. Hence, if one processor
is slow (perhaps due to external effects of a time-sharing environment), then the
other processors do not usually wait for the slow processor to finish.

Further, all data transfers take place a band at a time. In architectures for
which there is a significant start-up time to transfer data between processors,
this can be an important consideration. However, a disadvantage of the current
method is that the total amount of data transferred may be larger than other
methods. This frequently happens, for example, near the beginning of the com-
putation, when processors begin to “pre-triangularize” a band (see section 3.4)
while the first slave process is still upper triangularizing the first band of the ma-
trix. These additional bands must still be sent out and returned to the master,
only to be sent out again after the first band has been upper triangularized.

It is possible to alleviate this additional communication overhead by having
a slave check with the master before returning a band whose diagonal block has
not been upper triangularized. If the master has received updates from other
slaves in the interim, then it may be possible for the current slave to receive
the update and to then make continued progress on its current band before
returning from the task. TOP-C supports a CONTINUE action that can be used
to easily implement such an optimization. If necessary, a modified algorithm
that worked directly with blocks instead of bands would further alleviate this
situation of starvation.

As the ratio of the matrix dimension to the number of processors grows, the
total time dominates the time for the idle phase. As a practical matter Gregorio
Quintana has observed in a personal communication that his own experiments
with QR factorization routines using MPI seem to yield good results for band
sizes between 10 and 50.

Others are welcome to experiment with this approach to linear algebra by
ftp’ing the distribution from ftp://ftp.ccs.neu.edu/pub/people/gene/top-c/.
The distribution includes its own MPI subset, so as to be self-contained. The
Gaussian elimination example is included. Libraries are provided so that the
same application code can be run as a single, sequential program, as a dis-
tributed memory program using MPI, or as a shared memory program using
threads.

12

5 Acknowledgements

The author thanks Gregorio Quintana and Xiaobai Sun for their comments on
this paper. The author also thanks Gregorio Quintana, Reiner Staszewski and
Xiaobai Sun for valuable discussions.

References

[1] E.C. Anderson and J. Dongarra, “Performance of LAPACK: A Portable
Library of Numerical Linear Algebra Routines”, Proceedings of the
IEEE 81(8), 1993, pp. 1094–.

[2] A. Baratloo, P. Dasgupta, and Z. Kedem. “Calypso: A Novel Software
System for Fault-Tolerant Parallel Processing on Distributed Platforms”,
Proc. 4th IEEE Intl. Symp. on High Performance Distributed Computing,
1995, pp. 122–129.

[3] K.M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng, “In-
tegrated Support for Task and Data Parallelism”, Intl. J. Supercomputer
Applications 8(2), 1994, pp. 80-98.

[4] K.M. Chandy and C. Kesselman, “The Derivation of Compositional Pro-
grams”, Proc. 1992 Joint Intl. Conf. and Symp. on Logic Programming,
MIT Press, 1992.

[5] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov,
A. Petitet, K. Stanley, D. Walker and R.C. Whaley, ScaLA-
PACK: A Portable Linear Algebra Library for Distributed Memory
Computers-Design Issues and Performance, LAPACK Working Note 95,
http://www.netlib.org/lapack/lawns/lawn95.ps

[6] J. Choi, J.J. Dongarra and R.C. Whaley, “Design and Implementation of
the ScaLAPACK LU, QR, and Cholesky Factorization Routines”, Scientific
programming 5(3), Fall, 1996, pp. 173–.

[7] G. Cooperman, “GAP/MPI: Facilitating Parallelism”, Proc. of DIMACS
Workshop on Groups and Computation II 28, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, L. Finkelstein and
W.M. Kantor (eds.), AMS, Providence, RI, 1997, pp. 69–84.

[8] G. Cooperman, “STAR/MPI: Binding a Parallel Library to Interactive
Symbolic Algebra Systems”, Proc. of International Symposium on Sym-
bolic and Algebraic Computation (ISSAC ’95), ACM Press, pp. 126–132.

[9] G. Cooperman, “TOP-C: A Task-Oriented Parallel C Interface”, 5th Inter-
national Symposium on High Performance Distributed Computing (HPDC-
5), 1996, IEEE Press, pp. 141–150.

13

[10] G. Cooperman, L.Finkelstein, M.Tselman and B.York, Constructing Per-
mutation Representations for Matrix Groups, J. Symb. Comp. 24, 1997,
pp. 1–18.

[11] G. Cooperman and G. Havas, “Practical parallel coset enumeration”, Proc.
Workshop on High Performance Computing and Gigabit Local Area Net-
works, Lecture Notes in Control and Information Sciences 226, Springer-
Verlag, 1997, pp. 15–27.

[12] G. Cooperman, G. Hiss, K. Lux, and Jürgen Müller, “The Brauer tree of
the principal 19-block of the sporadic simple Thompson group”, J. of Ex-
perimental Mathematics, to appear.

[13] G. Cooperman and M. Tselman, “New Sequential and Parallel Algorithms
for Generating High Dimension Hecke Algebras using the Condensation
Technique”, Proc. of International Symposium on Symbolic and Algebraic
Computation (ISSAC ’96), ACM Press, pp. 155–160.

[14] I. Foster and K.M. Chandy, “Fortran M: A Language for Modular Parallel
Programming”, J. Parallel and Dist. Comput. 26(1) 1994, pp. 24–35.

[15] G.H. Golub and C.F. Van Loan, Matrix Computations, third edition, Johns
Hopkins University Press, 1996.

[16] A.S. Grimshaw, A. Ferrari and E. West, “Mentat”, in: Parallel Program-
ming Using C++, G.V. Wilson and P. Lu (eds.), MIT Press, 1996, pp. 383–
427.

[17] W. Gropp, E. Lusk and A. Skjellum, Using MPI, MIT Press, 1994.

[18] M.S. Lam, E.E. Rothberg, and M.E. Wolf, “The cache performance and
optimizations of blocked algorithms”, Fourth International Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems
(April 8–11, 1991), SIGPLAN Notices 26:4 (April, 1991), pp. 63–74.

[19] Message Passing Interface Forum (author), “MPI: A Message-Passing Inter-
face Standard”, International Journal of Supercomputing Applications 8,
Number 3/4, 1994.

[20] Y. Robert, The impact of vector and parallel architectures on the gaus-
sian elimination algorithm, Manchester University Press and John Wiley
& Sons, 1990.

[21] ScaLAPACK Home Page,
http://www.netlib.org/scalapack/scalapack home.html

14

